Biblio

Found 482 results

Filters: Keyword is Intrusion detection  [Clear All Filters]
2020-10-12
Sharafaldin, Iman, Ghorbani, Ali A..  2018.  EagleEye: A Novel Visual Anomaly Detection Method. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–6.
We propose a novel visualization technique (Eagle-Eye) for intrusion detection, which visualizes a host as a commu- nity of system call traces in two-dimensional space. The goal of EagleEye is to visually cluster the system call traces. Although human eyes can easily perceive anomalies using EagleEye view, we propose two different methods called SAM and CPM that use the concept of data depth to help administrators distinguish between normal and abnormal behaviors. Our experimental results conducted on Australian Defence Force Academy Linux Dataset (ADFA-LD), which is a modern system calls dataset that includes new exploits and attacks on various programs, show EagleEye's efficiency in detecting diverse exploits and attacks.
2020-10-29
Kahla, Mostafa, Azab, Mohamed, Mansour, Ahmed.  2018.  Secure, Resilient, and Self-Configuring Fog Architecture for Untrustworthy IoT Environments. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :49—54.

The extensive increase in the number of IoT devices and the massive data generated and sent to the cloud hinder the cloud abilities to handle it. Further, some IoT devices are latency-sensitive. Such sensitivity makes it harder for far clouds to handle the IoT needs in a timely manner. A new technology named "Fog computing" has emerged as a solution to such problems. Fog computing relies on close by computational devices to handle the conventional cloud load. However, Fog computing introduced additional problems related to the trustworthiness and safety of such devices. Unfortunately, the suggested architectures did not consider such problem. In this paper we present a novel self-configuring fog architecture to support IoT networks with security and trust in mind. We realize the concept of Moving-target defense by mobilizing the applications inside the fog using live migrations. Performance evaluations using a benchmark for mobilized applications showed that the added overhead of live migrations is very small making it deployable in real scenarios. Finally, we presented a mathematical model to estimate the survival probabilities of both static and mobile applications within the fog. Moreover, this work can be extended to other systems such as mobile ad-hoc networks (MANETS) or in vehicular cloud computing (VCC).

2019-08-05
Ghugar, U., Pradhan, J..  2018.  NL-IDS: Trust Based Intrusion Detection System for Network Layer in Wireless Sensor Networks. 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC). :512-516.

From the last few years, security in wireless sensor network (WSN) is essential because WSN application uses important information sharing between the nodes. There are large number of issues raised related to security due to open deployment of network. The attackers disturb the security system by attacking the different protocol layers in WSN. The standard AODV routing protocol faces security issues when the route discovery process takes place. The data should be transmitted in a secure path to the destination. Therefore, to support the process we have proposed a trust based intrusion detection system (NL-IDS) for network layer in WSN to detect the Black hole attackers in the network. The sensor node trust is calculated as per the deviation of key factor at the network layer based on the Black hole attack. We use the watchdog technique where a sensor node continuously monitors the neighbor node by calculating a periodic trust value. Finally, the overall trust value of the sensor node is evaluated by the gathered values of trust metrics of the network layer (past and previous trust values). This NL-IDS scheme is efficient to identify the malicious node with respect to Black hole attack at the network layer. To analyze the performance of NL-IDS, we have simulated the model in MATLAB R2015a, and the result shows that NL-IDS is better than Wang et al. [11] as compare of detection accuracy and false alarm rate.

2020-10-05
Abusitta, Adel, Bellaiche, Martine, Dagenais, Michel.  2018.  A trust-based game theoretical model for cooperative intrusion detection in multi-cloud environments. 2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :1—8.

Cloud systems are becoming more complex and vulnerable to attacks. Cyber attacks are also becoming more sophisticated and harder to detect. Therefore, it is increasingly difficult for a single cloud-based intrusion detection system (IDS) to detect all attacks, because of limited and incomplete knowledge about attacks. The recent researches in cyber-security have shown that a co-operation among IDSs can bring higher detection accuracy in such complex computer systems. Through collaboration, a cloud-based IDS can consult other IDSs about suspicious intrusions and increase the decision accuracy. The problem of existing cooperative IDS approaches is that they overlook having untrusted (malicious or not) IDSs that may negatively effect the decision about suspicious intrusions in the cloud. Moreover, they rely on a centralized architecture in which a central agent regulates the cooperation, which contradicts the distributed nature of the cloud. In this paper, we propose a framework that enables IDSs to distributively form trustworthy IDSs communities. We devise a novel decentralized algorithm, based on coalitional game theory, that allows a set of cloud-based IDSs to cooperatively set up their coalition in such a way to make their individual detection accuracy increase, even in the presence of untrusted IDSs.

2020-11-09
Ankam, D., Bouguila, N..  2018.  Compositional Data Analysis with PLS-DA and Security Applications. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :338–345.
In Compositional data, the relative proportions of the components contain important relevant information. In such case, Euclidian distance fails to capture variation when considered within data science models and approaches such as partial least squares discriminant analysis (PLS-DA). Indeed, the Euclidean distance assumes implicitly that the data is normally distributed which is not the case of compositional vectors. Aitchison transformation has been considered as a standard in compositional data analysis. In this paper, we consider two other transformation methods, Isometric log ratio (ILR) transformation and data-based power (alpha) transformation, before feeding the data to PLS-DA algorithm for classification [1]. In order to investigate the merits of both methods, we apply them in two challenging information system security applications namely spam filtering and intrusion detection.
2020-05-08
Vigneswaran, Rahul K., Vinayakumar, R., Soman, K.P., Poornachandran, Prabaharan.  2018.  Evaluating Shallow and Deep Neural Networks for Network Intrusion Detection Systems in Cyber Security. 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.
Intrusion detection system (IDS) has become an essential layer in all the latest ICT system due to an urge towards cyber safety in the day-to-day world. Reasons including uncertainty in finding the types of attacks and increased the complexity of advanced cyber attacks, IDS calls for the need of integration of Deep Neural Networks (DNNs). In this paper, DNNs have been utilized to predict the attacks on Network Intrusion Detection System (N-IDS). A DNN with 0.1 rate of learning is applied and is run for 1000 number of epochs and KDDCup-`99' dataset has been used for training and benchmarking the network. For comparison purposes, the training is done on the same dataset with several other classical machine learning algorithms and DNN of layers ranging from 1 to 5. The results were compared and concluded that a DNN of 3 layers has superior performance over all the other classical machine learning algorithms.
2019-08-26
Araujo, F., Taylor, T., Zhang, J., Stoecklin, M..  2018.  Cross-Stack Threat Sensing for Cyber Security and Resilience. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :18-21.

We propose a novel cross-stack sensor framework for realizing lightweight, context-aware, high-interaction network and endpoint deceptions for attacker disinformation, misdirection, monitoring, and analysis. In contrast to perimeter-based honeypots, the proposed method arms production workloads with deceptive attack-response capabilities via injection of booby-traps at the network, endpoint, operating system, and application layers. This provides defenders with new, potent tools for more effectively harvesting rich cyber-threat data from the myriad of attacks launched by adversaries whose identities and methodologies can be better discerned through direct engagement rather than purely passive observations of probe attempts. Our research provides new tactical deception capabilities for cyber operations, including new visibility into both enterprise and national interest networks, while equipping applications and endpoints with attack awareness and active mitigation capabilities.

2020-05-11
Üzüm, İbrahim, Can, Özgü.  2018.  An anomaly detection approach for enterprise file integration. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–4.
An information system based on real-time file integrations has an important role in today's organizations' work process management. By connecting to the network, file flow and integration between corporate systems have gained a great significance. In addition, network and security issues have emerged depending on the file structure and transfer processes. Thus, there has become a need for an effective and self-learning anomaly detection module for file transfer processes in order to provide the persistence of integration channels, accountability of transfer logs and data integrity. This paper proposes a novel anomaly detection approach that focuses on file size and integration duration of file transfers between enterprise systems. For this purpose, size and time anomalies on transferring files will be detected by a machine learning-based structure. Later, an alarm system is going to be developed in order to inform the authenticated individuals about the anomalies.
2019-01-16
Shi, T., Shi, W., Wang, C., Wang, Z..  2018.  Compressed Sensing based Intrusion Detection System for Hybrid Wireless Mesh Networks. 2018 International Conference on Computing, Networking and Communications (ICNC). :11–15.
As wireless mesh networks (WMNs) develop rapidly, security issue becomes increasingly important. Intrusion Detection System (IDS) is one of the crucial ways to detect attacks. However, IDS in wireless networks including WMNs brings high detection overhead, which degrades network performance. In this paper, we apply compressed sensing (CS) theory to IDS and propose a CS based IDS for hybrid WMNs. Since CS can reconstruct a sparse signal with compressive sampling, we process the detected data and construct sparse original signals. Through reconstruction algorithm, the compressive sampled data can be reconstructed and used for detecting intrusions, which reduces the detection overhead. We also propose Active State Metric (ASM) as an attack metric for recognizing attacks, which measures the activity in PHY layer and energy consumption of each node. Through intensive simulations, the results show that under 50% attack density, our proposed IDS can ensure 95% detection rate while reducing about 40% detection overhead on average.
2019-11-26
Baykara, Muhammet, Gürel, Zahit Ziya.  2018.  Detection of Phishing Attacks. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1-5.

Phishing is a form of cybercrime where an attacker imitates a real person / institution by promoting them as an official person or entity through e-mail or other communication mediums. In this type of cyber attack, the attacker sends malicious links or attachments through phishing e-mails that can perform various functions, including capturing the login credentials or account information of the victim. These e-mails harm victims because of money loss and identity theft. In this study, a software called "Anti Phishing Simulator'' was developed, giving information about the detection problem of phishing and how to detect phishing emails. With this software, phishing and spam mails are detected by examining mail contents. Classification of spam words added to the database by Bayesian algorithm is provided.

2019-05-01
Pillutla, H., Arjunan, A..  2018.  A Brief Review of Fuzzy Logic and Its Usage Towards Counter-Security Issues. 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :1-6.

Nowadays, most of the world's population has become much dependent on computers for banking, healthcare, shopping, and telecommunication. Security has now become a basic norm for computers and its resources since it has become inherently insecure. Security issues like Denial of Service attacks, TCP SYN Flooding attacks, Packet Dropping attacks and Distributed Denial of Service attacks are some of the methods by which unauthorized users make the resource unavailable to authorized users. There are several security mechanisms like Intrusion Detection System, Anomaly detection and Trust model by which we can be able to identify and counter the abuse of computer resources by unauthorized users. This paper presents a survey of several security mechanisms which have been implemented using Fuzzy logic. Fuzzy logic is one of the rapidly developing technologies, which is used in a sophisticated control system. Fuzzy logic deals with the degree of truth rather than the Boolean logic, which carries the values of either true or false. So instead of providing only two values, we will be able to define intermediate values.

Li, P., Liu, Q., Zhao, W., Wang, D., Wang, S..  2018.  Chronic Poisoning against Machine Learning Based IDSs Using Edge Pattern Detection. 2018 IEEE International Conference on Communications (ICC). :1-7.

In big data era, machine learning is one of fundamental techniques in intrusion detection systems (IDSs). Poisoning attack, which is one of the most recognized security threats towards machine learning- based IDSs, injects some adversarial samples into the training phase, inducing data drifting of training data and a significant performance decrease of target IDSs over testing data. In this paper, we adopt the Edge Pattern Detection (EPD) algorithm to design a novel poisoning method that attack against several machine learning algorithms used in IDSs. Specifically, we propose a boundary pattern detection algorithm to efficiently generate the points that are near to abnormal data but considered to be normal ones by current classifiers. Then, we introduce a Batch-EPD Boundary Pattern (BEBP) detection algorithm to overcome the limitation of the number of edge pattern points generated by EPD and to obtain more useful adversarial samples. Based on BEBP, we further present a moderate but effective poisoning method called chronic poisoning attack. Extensive experiments on synthetic and three real network data sets demonstrate the performance of the proposed poisoning method against several well-known machine learning algorithms and a practical intrusion detection method named FMIFS-LSSVM-IDS.

2020-06-12
Chiba, Zouhair, Abghour, Noreddine, Moussaid, Khalid, Omri, Amina El, Rida, Mohamed.  2018.  A Hybrid Optimization Framework Based on Genetic Algorithm and Simulated Annealing Algorithm to Enhance Performance of Anomaly Network Intrusion Detection System Based on BP Neural Network. 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). :1—6.

Today, network security is a world hot topic in computer security and defense. Intrusions and attacks in network infrastructures lead mostly in huge financial losses, massive sensitive data leaks, thus decreasing efficiency, competitiveness and the quality of productivity of an organization. Network Intrusion Detection System (NIDS) is valuable tool for the defense-in-depth of computer networks. It is widely deployed in network architectures in order to monitor, to detect and eventually respond to any anomalous behavior and misuse which can threat confidentiality, integrity and availability of network resources and services. Thus, the presence of NIDS in an organization plays a vital part in attack mitigation, and it has become an integral part of a secure organization. In this paper, we propose to optimize a very popular soft computing tool widely used for intrusion detection namely Back Propagation Neural Network (BPNN) using a novel hybrid Framework (GASAA) based on improved Genetic Algorithm (GA) and Simulated Annealing Algorithm (SAA). GA is improved through an optimization strategy, namely Fitness Value Hashing (FVH), which reduce execution time, convergence time and save processing power. Experimental results on KDD CUP' 99 dataset show that our optimized ANIDS (Anomaly NIDS) based BPNN, called “ANIDS BPNN-GASAA” outperforms several state-of-art approaches in terms of detection rate and false positive rate. In addition, improvement of GA through FVH has saved processing power and execution time. Thereby, our proposed IDS is very much suitable for network anomaly detection.

2020-05-11
Chandre, Pankaj Ramchandra, Mahalle, Parikshit Narendra, Shinde, Gitanjali Rahul.  2018.  Machine Learning Based Novel Approach for Intrusion Detection and Prevention System: A Tool Based Verification. 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN). :135–140.
Now a day, Wireless Sensor Networks are widely used in military applications by its applications, it is extended to healthcare, industrial environments and many more. As we know that, there are some unique features of WSNs such as limited power supply, minimum bandwidth and limited energy. So, to secure traditional network, multiple techniques are available, but we can't use same techniques to secure WSNs. So to increase the overall security of WSNs, we required new ideas as well as new approaches. In general, intrusion prevention is the primary issue in WSNs and intrusion detection already reached to saturation. Thus, we need an efficient solution for proactive intrusion prevention towards WSNs. Thus, formal validation of protocols in WSN is an essential area of research. This research paper aims to formally verify as well as model some protocol used for intrusion detection using AVISPA tool and HLPSL language. In this research paper, the results of authentication and DoS attacks were detected is presented, but there is a need to prevent such type of attacks. In this research paper, a system is proposed in order to avoid intrusion using machine learning for the wireless sensor network. So, the proposed system will be used for intrusion prevention in a wireless sensor network.
2019-03-06
Hess, S., Satam, P., Ditzler, G., Hariri, S..  2018.  Malicious HTML File Prediction: A Detection and Classification Perspective with Noisy Data. 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA). :1-7.

Cybersecurity plays a critical role in protecting sensitive information and the structural integrity of networked systems. As networked systems continue to expand in numbers as well as in complexity, so does the threat of malicious activity and the necessity for advanced cybersecurity solutions. Furthermore, both the quantity and quality of available data on malicious content as well as the fact that malicious activity continuously evolves makes automated protection systems for this type of environment particularly challenging. Not only is the data quality a concern, but the volume of the data can be quite small for some of the classes. This creates a class imbalance in the data used to train a classifier; however, many classifiers are not well equipped to deal with class imbalance. One such example is detecting malicious HMTL files from static features. Unfortunately, collecting malicious HMTL files is extremely difficult and can be quite noisy from HTML files being mislabeled. This paper evaluates a specific application that is afflicted by these modern cybersecurity challenges: detection of malicious HTML files. Previous work presented a general framework for malicious HTML file classification that we modify in this work to use a $\chi$2 feature selection technique and synthetic minority oversampling technique (SMOTE). We experiment with different classifiers (i.e., AdaBoost, Gentle-Boost, RobustBoost, RusBoost, and Random Forest) and a pure detection model (i.e., Isolation Forest). We benchmark the different classifiers using SMOTE on a real dataset that contains a limited number of malicious files (40) with respect to the normal files (7,263). It was found that the modified framework performed better than the previous framework's results. However, additional evidence was found to imply that algorithms which train on both the normal and malicious samples are likely overtraining to the malicious distribution. We demonstrate the likely overtraining by determining that a subset of the malicious files, while suspicious, did not come from a malicious source.

2019-05-01
Douzi, S., Benchaji, I., ElOuahidi, B..  2018.  Hybrid Approach for Intrusion Detection Using Fuzzy Association Rules. 2018 2nd Cyber Security in Networking Conference (CSNet). :1-3.

Rapid development of internet and network technologies has led to considerable increase in number of attacks. Intrusion detection system is one of the important ways to achieve high security in computer networks. However, it have curse of dimensionality which tends to increase time complexity and decrease resource utilization. To improve the ability of detecting anomaly intrusions, a combined algorithm is proposed based on Weighted Fuzzy C-Mean Clustering Algorithm (WFCM) and Fuzzy logic. Decision making is performed in two stages. In the first stage, WFCM algorithm is applied to reduce the input data space. The reduced dataset is then fed to Fuzzy Logic scheme to build the fuzzy sets, membership function and the rules that decide whether an instance represents an anomaly or not.

2020-11-02
Anzer, Ayesha, Elhadef, Mourad.  2018.  A Multilayer Perceptron-Based Distributed Intrusion Detection System for Internet of Vehicles. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :438—445.

Security of Internet of vehicles (IoV) is critical as it promises to provide with safer and secure driving. IoV relies on VANETs which is based on V2V (Vehicle to Vehicle) communication. The vehicles are integrated with various sensors and embedded systems allowing them to gather data related to the situation on the road. The collected data can be information associated with a car accident, the congested highway ahead, parked car, etc. This information exchanged with other neighboring vehicles on the road to promote safe driving. IoV networks are vulnerable to various security attacks. The V2V communication comprises specific vulnerabilities which can be manipulated by attackers to compromise the whole network. In this paper, we concentrate on intrusion detection in IoV and propose a multilayer perceptron (MLP) neural network to detect intruders or attackers on an IoV network. Results are in the form of prediction, classification reports, and confusion matrix. A thorough simulation study demonstrates the effectiveness of the new MLP-based intrusion detection system.

2020-05-11
Nikolov, Dimitar, Kordev, Iliyan, Stefanova, Stela.  2018.  Concept for network intrusion detection system based on recurrent neural network classifier. 2018 IEEE XXVII International Scientific Conference Electronics - ET. :1–4.
This paper presents the effects of problem based learning project on a high-school student in Technology school “Electronic systems” associated with Technical University Sofia. The problem is creating an intrusion detection system for Apache HTTP Server with duration 6 months. The intrusion detection system is based on a recurrent neural network classifier namely long-short term memory units.
2018-02-28
Shreenivas, Dharmini, Raza, Shahid, Voigt, Thiemo.  2017.  Intrusion Detection in the RPL-connected 6LoWPAN Networks. Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security. :31–38.
The interconnectivity of 6LoWPAN networks with the Internet raises serious security concerns, as constrained 6LoWPAN devices are accessible anywhere from the untrusted global Internet. Also, 6LoWPAN devices are mostly deployed in unattended environments, hence easy to capture and clone. Despite that state of the art crypto solutions provide information security, IPv6 enabled smart objects are vulnerable to attacks from outside and inside 6LoWPAN networks that are aimed to disrupt networks. This paper attempts to identify intrusions aimed to disrupt the Routing Protocol for Low-Power and Lossy Networks (RPL).In order to improve the security within 6LoWPAN networks, we extend SVELTE, an intrusion detection system for the Internet of Things, with an intrusion detection module that uses the ETX (Expected Transmissions) metric. In RPL, ETX is a link reliability metric and monitoring the ETX value can prevent an intruder from actively engaging 6LoWPAN nodes in malicious activities. We also propose geographic hints to identify malicious nodes that conduct attacks against ETX-based networks. We implement these extensions in the Contiki OS and evaluate them using the Cooja simulator.
2018-01-10
Fu, Bo, Xiao, Yang.  2017.  An Intrusion Detection Scheme in TCP/IP Networks Based on Flow-Net and Fingerprint. Proceedings of the SouthEast Conference. :13–17.
Based on our previous work for a novel logging methodology, called flow-net, we propose an Intrusion Detection System (IDS) using Flow-Net Based Fingerprint (IDS-FF) in this paper. We apply the IDS-FF scheme in TCP/IP (Transmission Control Protocol/Internet Protocol) networks for intrusion detection. Experimental results show good performance of the proposed scheme.
2018-09-28
Miller, Sean T., Busby-Earle, Curtis.  2017.  Multi-Perspective Machine Learning a Classifier Ensemble Method for Intrusion Detection. Proceedings of the 2017 International Conference on Machine Learning and Soft Computing. :7–12.
Today cyber security is one of the most active fields of re- search due to its wide range of impact in business, govern- ment and everyday life. In recent years machine learning methods and algorithms have been quite successful in a num- ber of security areas. In this paper, we explore an approach to classify intrusion called multi-perspective machine learn- ing (MPML). For any given cyber-attack there are multiple methods of detection. Every method of detection is built on one or more network characteristic. These characteristics are then represented by a number of network features. The main idea behind MPML is that, by grouping features that support the same characteristics into feature subsets called perspectives, this will encourage diversity among perspectives (classifiers in the ensemble) and improve the accuracy of prediction. Initial results on the NSL- KDD dataset show at least a 4% improvement over other ensemble methods such as bagging boosting rotation forest and random for- est.
2018-03-19
Fridman, L., Weber, S., Greenstadt, R., Kam, M..  2017.  Active Authentication on Mobile Devices via Stylometry, Application Usage, Web Browsing, and GPS Location. IEEE Systems Journal. 11:513–521.

Active authentication is the problem of continuously verifying the identity of a person based on behavioral aspects of their interaction with a computing device. In this paper, we collect and analyze behavioral biometrics data from 200 subjects, each using their personal Android mobile device for a period of at least 30 days. This data set is novel in the context of active authentication due to its size, duration, number of modalities, and absence of restrictions on tracked activity. The geographical colocation of the subjects in the study is representative of a large closed-world environment such as an organization where the unauthorized user of a device is likely to be an insider threat: coming from within the organization. We consider four biometric modalities: 1) text entered via soft keyboard, 2) applications used, 3) websites visited, and 4) physical location of the device as determined from GPS (when outdoors) or WiFi (when indoors). We implement and test a classifier for each modality and organize the classifiers as a parallel binary decision fusion architecture. We are able to characterize the performance of the system with respect to intruder detection time and to quantify the contribution of each modality to the overall performance.

2018-07-18
Vávra, J., Hromada, M..  2017.  Anomaly Detection System Based on Classifier Fusion in ICS Environment. 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT). :32–38.

The detection of cyber-attacks has become a crucial task for highly sophisticated systems like industrial control systems (ICS). These systems are an essential part of critical information infrastructure. Therefore, we can highlight their vital role in contemporary society. The effective and reliable ICS cyber defense is a significant challenge for the cyber security community. Thus, intrusion detection is one of the demanding tasks for the cyber security researchers. In this article, we examine classification problem. The proposed detection system is based on supervised anomaly detection techniques. Moreover, we utilized classifiers algorithms in order to increase intrusion detection capabilities. The fusion of the classifiers is the way how to achieve the predefined goal.

2018-03-19
Lee, M., Choi, J., Choi, C., Kim, P..  2017.  APT Attack Behavior Pattern Mining Using the FP-Growth Algorithm. 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–4.

There are continuous hacking and social issues regarding APT (Advanced Persistent Threat - APT) attacks and a number of antivirus businesses and researchers are making efforts to analyze such APT attacks in order to prevent or cope with APT attacks, some host PC security technologies such as firewalls and intrusion detection systems are used. Therefore, in this study, malignant behavior patterns were extracted by using an API of PE files. Moreover, the FP-Growth Algorithm to extract behavior information generated in the host PC in order to overcome the limitation of the previous signature-based intrusion detection systems. We will utilize this study as fundamental research about a system that extracts malignant behavior patterns within networks and APIs in the future.

2018-04-02
Ádám, Norbert, Madoš, Branislav, Baláž, Anton, Pavlik, Tomáš.  2017.  Artificial Neural Network Based IDS. 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI). :000159–000164.

The Network Intrusion Detection Systems (NIDS) are either signature based or anomaly based. In this paper presented NIDS system belongs to anomaly based Neural Network Intrusion Detection System (NNIDS). The proposed NNIDS is able to successfully recognize learned malicious activities in a network environment. It was tested for the SYN flood attack, UDP flood attack, nMap scanning attack, and also for non-malicious communication.