Biblio
This paper presents a comprehensive review of state-of-the-art research works in knowledge-based user authentication, covering the security and usability aspects of the most prominent user authentication schemes; text-, pin- and graphical-based. From the security perspective, we analyze current threats from a user and service provider perspective. Furthermore, based on current practices in authentication policies, we summarize and discuss their security strengths based on widely applied security metrics. From the usability point of view, we present and discuss the usability of each authentication scheme in regards with task performance and user experience. The analysis reveals that although a plethora of alternative user authentication schemes have been proposed in the literature and users interact differently with the various alternatives, online service providers do not yet adopt alternatives to text-based solutions. We further discuss and identify areas for further research and improved methodology with the aim to drive this research towards the design of sustainable, secure and usable authentication approaches.
A low latency is a fundamental timeliness requirement to reduce the potential risks of cyber sickness and to increase effectiveness, efficiency, and user experience of Virtual Reality Systems. The effects of uniform latency degradation based on mean or worst-case values are well researched. In contrast, the effects of latency jitter, the distribution pattern of latency changes over time has largely been ignored so far although today's consumer VR systems are extremely vulnerable in this respect. We investigate the applicability of the Walsh, generalized ESD, and the modified z-score test for the detection of outliers as one central latency distribution aspect. The tests are applied to well defined test cases mimicking typical timing behavior expected from concurrent architectures of today. We introduce accompanying graphical visualization methods to inspect, analyze and communicate the latency behavior of VR systems beyond simple mean or worst-case values. As a result, we propose a stacked modified z-score test for more detailed analysis.
A major component of modern vehicles is the infotainment system, which interfaces with its drivers and passengers. Other mobile devices, such as handheld phones and laptops, can relay information to the embedded infotainment system through Bluetooth and vehicle WiFi. The ability to extract information from these systems would help forensic analysts determine the general contents that is stored in an infotainment system. Based off the data that is extracted, this would help determine what stored information is relevant to law enforcement agencies and what information is non-essential when it comes to solving criminal activities relating to the vehicle itself. This would overall solidify the Intelligent Transport System and Vehicular Ad Hoc Network infrastructure in combating crime through the use of vehicle forensics. Additionally, determining the content of these systems will allow forensic analysts to know if they can determine anything about the end-user directly and/or indirectly.
The Common Vulnerability Scoring System (CVSS) is the de facto standard for vulnerability severity measurement today and is crucial in the analytics driving software fortification. Required by the U.S. National Vulnerability Database, over 75,000 vulnerabilities have been scored using CVSS. We compare how the CVSS correlates with another, closely-related measure of security impact: bounties. Recent economic studies of vulnerability disclosure processes show a clear relationship between black market value and bounty payments. We analyzed the CVSS scores and bounty awarded for 703 vulnerabilities across 24 products. We found a weak (Spearmanâs Ï = 0.34) correlation between CVSS scores and bounties, with CVSS being more likely to underestimate bounty. We believe such a negative result is a cause for concern. We investigated why these measurements were so discordant by (a) analyzing the individual questions of CVSS with respect to bounties and (b) conducting a qualitative study to find the similarities and differences between CVSS and the publicly-available criteria for awarding bounties. Among our findings were that the bounty criteria were more explicit about code execution and privilege escalation whereas CVSS makes no explicit mention of those. We also found that bounty valuations are evaluated solely by project maintainers, whereas CVSS has little provenance in practice.
The recent growth of anonymous social network services – such as 4chan, Whisper, and Yik Yak – has brought online anonymity into the spotlight. For these services to function properly, the integrity of user anonymity must be preserved. If an attacker can determine the physical location from where an anonymous message was sent, then the attacker can potentially use side information (for example, knowledge of who lives at the location) to de-anonymize the sender of the message. In this paper, we investigate whether the popular anonymous social media application Yik Yak is susceptible to localization attacks, thereby putting user anonymity at risk. The problem is challenging because Yik Yak application does not provide information about distances between user and message origins or any other message location information. We provide a comprehensive data collection and supervised machine learning methodology that does not require any reverse engineering of the Yik Yak protocol, is fully automated, and can be remotely run from anywhere. We show that we can accurately predict the locations of messages up to a small average error of 106 meters. We also devise an experiment where each message emanates from one of nine dorm colleges on the University of California Santa Cruz campus. We are able to determine the correct dorm college that generated each message 100\textbackslash% of the time.
Content Security Policy (CSP) is powerful client-side security layer that helps in mitigating and detecting wide ranges of Web attacks including cross-site scripting (XSS). However, utilizing CSP by site administrators is a fallible process and may require significant changes in web application code. In this paper, we propose an approach to help site administers to overcome these limitations in order to utilize the full benefits of CSP mechanism which leads to more immune sites from XSS. The algorithm is implemented as a plugin. It does not interfere with the Web application original code. The plugin can be “installed” on any other web application with minimum efforts. The algorithm can be implemented as part of Web Server layer, not as part of the business logic layer. It can be extended to support generating CSP for contents that are modified by JavaScript after loading. Current approach inspects the static contents of URLs.
Named Data Networking (NDN), a clean-slate data oriented Internet architecture targeting on replacing IP, brings many potential benefits for content distribution. Real deployment of NDN is crucial to verify this new architecture and promote academic research, but work in this field is at an early stage. Due to the fundamental design paradigm difference between NDN and IP, Deploying NDN as IP overlay causes high overhead and inefficient transmission, typically in streaming applications. Aiming at achieving efficient NDN streaming distribution, this paper proposes a transitional architecture of NDN/IP hybrid network dubbed Centaur, which embodies both NDN's smartness, scalability and IP's transmission efficiency and deployment feasibility. In Centaur, the upper NDN module acts as the smart head while the lower IP module functions as the powerful feet. The head is intelligent in content retrieval and self-control, while the IP feet are able to transport large amount of media data faster than that if NDN directly overlaying on IP. To evaluate the performance of our proposal, we implement a real streaming prototype in ndnSIM and compare it with both NDN-Hippo and P2P under various experiment scenarios. The result shows that Centaur can achieve better load balance with lower overhead, which is close to the performance that ideal NDN can achieve. All of these validate that our proposal is a promising choice for the incremental and compatible deployment of NDN.
Consensus is a fundamental approach to implementing fault-tolerant services through replication. It is well known that there exists a tradeoff between the cost and the resilience. For instance, Crash Fault Tolerant (CFT) protocols have a low cost but can only handle crash failures while Byzantine Fault Tolerant (BFT) protocols handle arbitrary failures but have a higher cost. Hybrid protocols enjoy the benefits of both high performance without failures and high resiliency under failures by switching among different subprotocols. However, it is challenging to determine which subprotocols should be used. We propose a moving target approach to switch among protocols according to the existing system and network vulnerability. At the core of our approach is a formalized cost model that evaluates the vulnerability and performance of consensus protocols based on real-time Intrusion Detection System (IDS) signals. Based on the evaluation results, we demonstrate that a safe, cheap, and unpredictable protocol is always used and a high IDS error rate can be tolerated.
Cyber-physical system integrity requires both hardware and software security. Many of the cyber attacks are successful as they are designed to selectively target a specific hardware or software component in an embedded system and trigger its failure. Existing security measures also use attack vector models and isolate the malicious component as a counter-measure. Isolated security primitives do not provide the overall trust required in an embedded system. Trust enhancements are proposed to a hardware security platform, where the trust specifications are implemented in both software and hardware. This distribution of trust makes it difficult for a hardware-only or software-only attack to cripple the system. The proposed approach is applied to a smart grid application consisting of third-party soft IP cores, where an attack on this module can result in a blackout. System integrity is preserved in the event of an attack and the anomalous behavior of the IP core is recorded by a supervisory module. The IP core also provides a snapshot of its trust metric, which is logged for further diagnostics.
Federated cloud networks are formed by federating virtual network segments from different clouds, e.g. in a hybrid cloud, into a single federated network. Such networks should be protected with a global federated cloud network security policy. The availability of network function virtualisation and service function chaining in cloud platforms offers an opportunity for implementing and enforcing global federated cloud network security policies. In this paper we describe an approach for enforcing global security policies in federated cloud networks. The approach relies on a service manifest that specifies the global network security policy. From this manifest configurations of the security functions for the different clouds of the federation are generated. This enables automated deployment and configuration of network security functions across the different clouds. The approach is illustrated with a case study where communications between trusted and untrusted clouds, e.g. public clouds, are encrypted. The paper discusses future work on implementing this architecture for the OpenStack cloud platform with the service function chaining API.
Distributed Denial of Service attacks against high-profile targets have become more frequent in recent years. In response to such massive attacks, several architectures have adopted proxies to introduce layers of indirection between end users and target services and reduce the impact of a DDoS attack by migrating users to new proxies and shuffling clients across proxies so as to isolate malicious clients. However, the reactive nature of these solutions presents weaknesses that we leveraged to develop a new attack - the proxy harvesting attack - which enables malicious clients to collect information about a large number of proxies before launching a DDoS attack. We show that current solutions are vulnerable to this attack, and propose a moving target defense technique consisting in periodically and proactively replacing one or more proxies and remapping clients to proxies. Our primary goal is to disrupt the attacker's reconnaissance effort. Additionally, to mitigate ongoing attacks, we propose a new client-to-proxy assignment strategy to isolate compromised clients, thereby reducing the impact of attacks. We validate our approach both theoretically and through simulation, and show that the proposed solution can effectively limit the number of proxies an attacker can discover and isolate malicious clients.
With the popularization and development of network knowledge, network intruders are increasing, and the attack mode has been updated. Intrusion detection technology is a kind of active defense technology, which can extract the key information from the network system, and quickly judge and protect the internal or external network intrusion. Intrusion detection is a kind of active security technology, which provides real-time protection for internal attacks, external attacks and misuse, and it plays an important role in ensuring network security. However, with the diversification of intrusion technology, the traditional intrusion detection system cannot meet the requirements of the current network security. Therefore, the implementation of intrusion detection needs diversifying. In this context, we apply neural network technology to the network intrusion detection system to solve the problem. In this paper, on the basis of intrusion detection method, we analyze the development history and the present situation of intrusion detection technology, and summarize the intrusion detection system overview and architecture. The neural network intrusion detection is divided into data acquisition, data analysis, pretreatment, intrusion behavior detection and testing.
Coming days are becoming a much challenging task for the power system researchers due to the anomalous increase in the load demand with the existing system. As a result there exists a discordant between the transmission and generation framework which is severely pressurizing the power utilities. In this paper a quick and efficient methodology has been proposed to identify the most sensitive or susceptible regions in any power system network. The technique used in this paper comprises of correlation of a multi-bus power system network to an equivalent two-bus network along with the application of Artificial neural network(ANN) Architecture with training algorithm for online monitoring of voltage security of the system under all multiple exigencies which makes it more flexible. A fast voltage stability indicator has been proposed known as Unified Voltage Stability Indicator (UVSI) which is used as a substratal apparatus for the assessment of the voltage collapse point in a IEEE 30-bus power system in combination with the Feed Forward Neural Network (FFNN) to establish the accuracy of the status of the system for different contingency configurations.
In this paper we analyse possibilities of application of post-quantum code based signature schemes for message authentication purposes. An error-correcting code based digital signature algorithm is presented. There also shown results of computer simulation for this algorithm in case of Reed-Solomon codes and the estimated efficiency of its software implementation. We consider perspectives of error-correcting codes for message authentication and outline further research directions.
Legacy work on correcting firewall anomalies operate with the premise of creating totally disjunctive rules. Unfortunately, such solutions are impractical from implementation point of view as they lead to an explosion of the number of firewall rules. In a related previous work, we proposed a new approach for performing assisted corrective actions, which in contrast to the-state-of-the-art family of radically disjunctive approaches, does not lead to a prohibitive increase of the configuration size. In this sense, we allow relaxation in the correction process by clearly distinguishing between constructive anomalies that can be tolerated and destructive anomalies that should be systematically fixed. However, a main disadvantage of the latter approach was its dependency on the guided input from the administrator which controversially introduces a new risk for human errors. In order to circumvent the latter disadvantage, we present in this paper a Firewall Policy Query Engine (FPQE) that renders the whole process of anomaly resolution a fully automated one and which does not require any human intervention. In this sense, instead of prompting the administrator for inserting the proper order corrective actions, FPQE executes those queries against a high level firewall policy. We have implemented the FPQE and the first results of integrating it with our legacy anomaly resolver are promising.
Embedded systems are becoming increasingly complex as designers integrate different functionalities into a single application for execution on heterogeneous hardware platforms. In this work we propose a system-level security approach in order to provide isolation of tasks without the need to trust a central authority at run-time. We discuss security requirements that can be found in complex embedded systems that use heterogeneous execution platforms, and by regulating memory access we create mechanisms that allow safe use of shared IP with direct memory access, as well as shared libraries. We also present a prototype Isolation Unit that checks memory transactions and allows for dynamic configuration of permissions.
To enhance the encryption and anti-translation capability of the information, we constructed a five-dimensional chaotic system. Combined with the Lü system, a time-switched system with multiple chaotic attractors is realized in the form of a digital circuit. Some characteristics of the five-dimensional system are analyzed, such as Poincare mapping, the Lyapunov exponent spectrum, and bifurcation diagram. The analysis shows that the system exhibits chaotic characteristics for a wide range of parameter values. We constructed a time-switched expression between multiple chaotic attractors using the communication between a microcontroller unit (MCU) and field programmable gate array (FPGA). The system can quickly switch between different chaotic attractors within the chaotic system and between chaotic systems at any time, leading to signal sources with more variability, diversity, and complexity for chaotic encryption.
A cross-layer secure communication scheme for multiple input multiple output (MIMO) system based on spatial modulation (SM) is proposed in this paper. The proposed scheme combined the upper layer stream cipher with the distorted signal design of the MIMO spatial modulation system in the physical layer to realize the security information transmission, which is called cross-layer secure communication system. Simulation results indicate that the novel scheme not only further ensure the legitimate user an ideal reception demodulation performance as the original system, but also make the eavesdropper' error rate stable at 0.5. The novel system do not suffer from a significant increasing complexity.
Multivariate public key cryptosystem acts as a signature system rather than encryption system due to the minus mode used in system. A multivariate encryption system with determinate equations in central map and chaotic shell protection for central map and affine map is proposed in this paper. The outputs of two-dimension chaotic system are discretized on a finite field to disturb the central map and affine map in multivariate cryptosystem. The determined equations meet the shortage of indeterminate equations in minus mode and make the general attack methods are out of tenable condition. The analysis shows the proposed multivariate symmetric encryption system based on chaotic shell is able to resist general attacks.
Separation of network control from devices in Software Defined Network (SDN) allows for centralized implementation and management of security policies in a cloud computing environment. The ease of programmability also makes SDN a great platform implementation of various initiatives that involve application deployment, dynamic topology changes, and decentralized network management in a multi-tenant data center environment. Dynamic change of network topology, or host reconfiguration in such networks might require corresponding changes to the flow rules in the SDN based cloud environment. Verifying adherence of these new flow policies in the environment to the organizational security policies and ensuring a conflict free environment is especially challenging. In this paper, we extend the work on rule conflicts from a traditional environment to an SDN environment, introducing a new classification to describe conflicts stemming from cross-layer conflicts. Our framework ensures that in any SDN based cloud, flow rules do not have conflicts at any layer; thereby ensuring that changes to the environment do not lead to unintended consequences. We demonstrate the correctness, feasibility and scalability of our framework through a proof-of-concept prototype.
Internet has been being becoming the most famous and biggest communication networks as social, industrial, and public infrastructure since Internet was invented at late 1960s. In a historical retrospect of Internet's evolution, the Internet architecture continues evolution repeatedly by going through various technical challenges, for instance, in early 1990s, Internet had encountered danger of scalability, after a short while it had been overcome and successfully evolved by applying emerging techniques such as CIDR, NAT, and IPv6. Especially this paper emphasizes scalability issues as technical challenges with forecasting that Internet of things era has come. Firstly, we describe the Identifier and locator separation scheme that can achieve dramatically architectural evolution in historical perspective. Additionally, it reviews various kinds of Identifier and locator separation scheme because recently the scheme can be the major design pillar towards future of Internet architecture such as both various clean-slated future Internet architectures and evolving Internet architectures. Lastly we show a result of analysis by analysis table for future of internet of everything where number of Internet connected devices will growth to more than 20 billion by 2020.
Online Social Networks (OSNs) are continuously suffering from the negative impact of Cross-Site Scripting (XSS) vulnerabilities. This paper describes a novel framework for mitigating XSS attack on OSN-based platforms. It is completely based on the request authentication and view isolation approach. It detects XSS attack through validating string value extracted from the vulnerable checkpoint present in the web page by implementing string examination algorithm with the help of XSS attack vector repository. Any similarity (i.e. string is not validated) indicates the presence of malicious code injected by the attacker and finally it removes the script code to mitigate XSS attack. To assess the defending ability of our designed model, we have tested it on OSN-based web application i.e. Humhub. The experimental results revealed that our model discovers the XSS attack vectors with low false negatives and false positive rate tolerable performance overhead.