Visible to the public You Can Yak but You Can'T Hide: Localizing Anonymous Social Network Users

TitleYou Can Yak but You Can'T Hide: Localizing Anonymous Social Network Users
Publication TypeConference Paper
Year of Publication2016
AuthorsXue, Minhui, Ballard, Cameron, Liu, Kelvin, Nemelka, Carson, Wu, Yanqiu, Ross, Keith, Qian, Haifeng
Conference NameProceedings of the 2016 Internet Measurement Conference
Date PublishedNovember 2016
PublisherACM
Conference LocationNew York, NY, USA
ISBN Number978-1-4503-4526-2
Keywordsanonymity, anonymity in wireless networks, anonymous messaging, anonymous social networks, composability, Human Behavior, localization attack, machine learning inference, Metrics, pubcrawl, Resiliency, yik yak
Abstract

The recent growth of anonymous social network services - such as 4chan, Whisper, and Yik Yak - has brought online anonymity into the spotlight. For these services to function properly, the integrity of user anonymity must be preserved. If an attacker can determine the physical location from where an anonymous message was sent, then the attacker can potentially use side information (for example, knowledge of who lives at the location) to de-anonymize the sender of the message. In this paper, we investigate whether the popular anonymous social media application Yik Yak is susceptible to localization attacks, thereby putting user anonymity at risk. The problem is challenging because Yik Yak application does not provide information about distances between user and message origins or any other message location information. We provide a comprehensive data collection and supervised machine learning methodology that does not require any reverse engineering of the Yik Yak protocol, is fully automated, and can be remotely run from anywhere. We show that we can accurately predict the locations of messages up to a small average error of 106 meters. We also devise an experiment where each message emanates from one of nine dorm colleges on the University of California Santa Cruz campus. We are able to determine the correct dorm college that generated each message 100\textbackslash% of the time.

URLhttps://dl.acm.org/doi/10.1145/2987443.2987449
DOI10.1145/2987443.2987449
Citation Keyxue_you_2016