Biblio

Found 350 results

Filters: Keyword is data mining  [Clear All Filters]
2021-11-29
Hermerschmidt, Lars, Straub, Andreas, Piskachev, Goran.  2020.  Language-Agnostic Injection Detection. 2020 IEEE Security and Privacy Workshops (SPW). :268–275.
Formal languages are ubiquitous wherever software systems need to exchange or store data. Unparsing into and parsing from such languages is an error-prone process that has spawned an entire class of security vulnerabilities. There has been ample research into finding vulnerabilities on the parser side, but outside of language specific approaches, few techniques targeting unparser vulnerabilities exist. This work presents a language-agnostic approach for spotting injection vulnerabilities in unparsers. It achieves this by mining unparse trees using dynamic taint analysis to extract language keywords, which are leveraged for guided fuzzing. Vulnerabilities can thus be found without requiring prior knowledge about the formal language, and in fact, the approach is even applicable where no specification thereof exists at all. This empowers security researchers and developers alike to gain deeper understanding of unparser implementations through examination of the unparse trees generated by the approach, as well as enabling them to find new vulnerabilities in poorly-understood software. This work presents a language-agnostic approach for spotting injection vulnerabilities in unparsers. It achieves this by mining unparse trees using dynamic taint analysis to extract language keywords, which are leveraged for guided fuzzing. Vulnerabilities can thus be found without requiring prior knowledge about the formal language, and in fact, the approach is even applicable where no specification thereof exists at all. This empowers security researchers and developers alike to gain deeper understanding of unparser implementations through examination of the unparse trees generated by the approach, as well as enabling them to find new vulnerabilities in poorly-understood software.
2021-09-07
Franco, Muriel Figueredo, Rodrigues, Bruno, Scheid, Eder John, Jacobs, Arthur, Killer, Christian, Granville, Lisandro Zambenedetti, Stiller, Burkhard.  2020.  SecBot: a Business-Driven Conversational Agent for Cybersecurity Planning and Management. 2020 16th International Conference on Network and Service Management (CNSM). :1–7.
Businesses were moving during the past decades to-ward full digital models, which made companies face new threats and cyberattacks affecting their services and, consequently, their profits. To avoid negative impacts, companies' investments in cybersecurity are increasing considerably. However, Small and Medium-sized Enterprises (SMEs) operate on small budgets, minimal technical expertise, and few personnel to address cybersecurity threats. In order to address such challenges, it is essential to promote novel approaches that can intuitively present cybersecurity-related technical information.This paper introduces SecBot, a cybersecurity-driven conversational agent (i.e., chatbot) for the support of cybersecurity planning and management. SecBot applies concepts of neural networks and Natural Language Processing (NLP), to interact and extract information from a conversation. SecBot can (a) identify cyberattacks based on related symptoms, (b) indicate solutions and configurations according to business demands, and (c) provide insightful information for the decision on cybersecurity investments and risks. A formal description had been developed to describe states, transitions, a language, and a Proof-of-Concept (PoC) implementation. A case study and a performance evaluation were conducted to provide evidence of the proposed solution's feasibility and accuracy.
2021-03-30
Ganfure, G. O., Wu, C.-F., Chang, Y.-H., Shih, W.-K..  2020.  DeepGuard: Deep Generative User-behavior Analytics for Ransomware Detection. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1—6.

In the last couple of years, the move to cyberspace provides a fertile environment for ransomware criminals like ever before. Notably, since the introduction of WannaCry, numerous ransomware detection solution has been proposed. However, the ransomware incidence report shows that most organizations impacted by ransomware are running state of the art ransomware detection tools. Hence, an alternative solution is an urgent requirement as the existing detection models are not sufficient to spot emerging ransomware treat. With this motivation, our work proposes "DeepGuard," a novel concept of modeling user behavior for ransomware detection. The main idea is to log the file-interaction pattern of typical user activity and pass it through deep generative autoencoder architecture to recreate the input. With sufficient training data, the model can learn how to reconstruct typical user activity (or input) with minimal reconstruction error. Hence, by applying the three-sigma limit rule on the model's output, DeepGuard can distinguish the ransomware activity from the user activity. The experiment result shows that DeepGuard effectively detects a variant class of ransomware with minimal false-positive rates. Overall, modeling the attack detection with user-behavior permits the proposed strategy to have deep visibility of various ransomware families.

2021-08-31
Sun, Yanfei, Yu, Mengyuan, Wang, Junyu.  2020.  Research and Development of QR Code Steganography Based on JSteg Algorithm in DCT Domain. 2020 IEEE 15th International Conference on Solid-State Integrated Circuit Technology (ICSICT). :1—4.
Using steganography for data hiding is becoming a main subject to ensure both information security and picture quality. Traditional steganography algorithms usually convert secret information into a binary string and embed it in the pixel data of the cover image. In order to ensure the information security as well as convenient transmission, this work studies the steganography algorithm of embedding the QR code containing secret information into the cover image, based on the JSteg algorithm. Secret messages with different sizes have been tested by many cover images and standard parameters have adopted to verify the efficiency. According to the experimental results, all the PSNR in a value that is greater than 47.6 dB. The proposed method has high security and more imperceptibility.
2021-05-05
Hossain, Md. Turab, Hossain, Md. Shohrab, Narman, Husnu S..  2020.  Detection of Undesired Events on Real-World SCADA Power System through Process Monitoring. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0779—0785.
A Supervisory Control and Data Acquisition (SCADA) system used in controlling or monitoring purpose in industrial process automation system is the process of collecting data from instruments and sensors located at remote sites and transmitting data at a central site. Most of the existing works on SCADA system focused on simulation-based study which cannot always mimic the real world situations. We propose a novel methodology that analyzes SCADA logs on offline basis and helps to detect process-related threats. This threat takes place when an attacker performs malicious actions after gaining user access. We conduct our experiments on a real-life SCADA system of a Power transmission utility. Our proposed methodology will automate the analysis of SCADA logs and systemically identify undesired events. Moreover, it will help to analyse process-related threats caused by user activity. Several test study suggest that our approach is powerful in detecting undesired events that might caused by possible malicious occurrence.
2021-08-31
Kim, Hwajung, Yeom, Heon Young, Son, Yongseok.  2020.  An Efficient Database Backup and Recovery Scheme using Write-Ahead Logging. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :405—413.
Many cloud services perform periodic database backup to keep the data safe from failures such as sudden system crashes. In the database system, two techniques are widely used for data backup and recovery: a physical backup and a logical backup. The physical backup uses raw data by copying the files in the database, whereas the logical backup extracts data from the database and dumps it into separated files as a sequence of query statements. Both techniques support a full backup strategy that contains data of the entire database and incremental backup strategy that contains changed data since a previous backup. However, both strategies require additional I/O operations to perform the backup and need a long time to restore a backup. In this paper, we propose an efficient backup and recovery scheme by exploiting write-ahead logging (WAL) in database systems. In the proposed scheme, for backup, we devise a backup system to use log data generated by the existing WAL to eliminate the additional I/O operations. To restore a backup, we utilize and optimize the existing crash recovery procedure of WAL to reduce recovery time. For example, we divide the recovery range and applying the backup data for each range independently via multiple threads. We implement our scheme in MySQL, a popular database management system. The experimental result demonstrates that the proposed scheme provides instant backup while reducing recovery time compared with the existing schemes.
2021-06-24
Stöckle, Patrick, Grobauer, Bernd, Pretschner, Alexander.  2020.  Automated Implementation of Windows-related Security-Configuration Guides. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :598—610.
Hardening is the process of configuring IT systems to ensure the security of the systems' components and data they process or store. The complexity of contemporary IT infrastructures, however, renders manual security hardening and maintenance a daunting task. In many organizations, security-configuration guides expressed in the SCAP (Security Content Automation Protocol) are used as a basis for hardening, but these guides by themselves provide no means for automatically implementing the required configurations. In this paper, we propose an approach to automatically extract the relevant information from publicly available security-configuration guides for Windows operating systems using natural language processing. In a second step, the extracted information is verified using the information of available settings stored in the Windows Administrative Template files, in which the majority of Windows configuration settings is defined. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides. In many organizations, security-configuration guides expressed in the SCAP (Security Content Automation Protocol) are used as a basis for hardening, but these guides by themselves provide no means for automatically implementing the required configurations. In this paper, we propose an approach to automatically extract the relevant information from publicly available security-configuration guides for Windows operating systems using natural language processing. In a second step, the extracted information is verified using the information of available settings stored in the Windows Administrative Template files, in which the majority of Windows configuration settings is defined. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides. In this paper, we propose an approach to automatically extract the relevant information from publicly available security-configuration guides for Windows operating systems using natural language processing. In a second step, the extracted information is verified using the information of available settings stored in the Windows Administrative Template files, in which the majority of Windows configuration settings is defined. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides.
2021-03-09
Badawi, E., Jourdan, G.-V., Bochmann, G., Onut, I.-V..  2020.  An Automatic Detection and Analysis of the Bitcoin Generator Scam. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :407—416.

We investigate what we call the "Bitcoin Generator Scam" (BGS), a simple system in which the scammers promise to "generate" new bitcoins using the ones that were sent to them. A typical offer will suggest that, for a small fee, one could receive within minutes twice the amount of bitcoins submitted. BGS is clearly not a very sophisticated attack. The modus operandi is simply to put up some web page on which to find the address to send the money and wait for the payback. The pages are then indexed by search engines, and ready to find for victims looking for free bitcoins. We describe here a generic system to find and analyze scams such as BGS. We have trained a classifier to detect these pages, and we have a crawler searching for instances using a series of search engines. We then monitor the instances that we find to trace payments and bitcoin addresses that are being used over time. Unlike most bitcoin-based scam monitoring systems, we do not rely on analyzing transactions on the blockchain to find scam instances. Instead, we proactively find these instances through the web pages advertising the scam. Thus our system is able to find addresses with very few transactions, or even none at all. Indeed, over half of the addresses that have eventually received funds were detected before receiving any transactions. The data for this paper was collected over four months, from November 2019 to February 2020. We have found more than 1,300 addresses directly associated with the scam, hosted on over 500 domains. Overall, these addresses have received (at least) over 5 million USD to the scam, with an average of 47.3 USD per transaction.

2020-03-02
Arifeen, Md Murshedul, Islam, Al Amin, Rahman, Md Mustafizur, Taher, Kazi Abu, Islam, Md.Maynul, Kaiser, M Shamim.  2019.  ANFIS based Trust Management Model to Enhance Location Privacy in Underwater Wireless Sensor Networks. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). :1–6.
Trust management is a promising alternative solution to different complex security algorithms for Underwater Wireless Sensor Networks (UWSN) applications due to its several resource constraint behaviour. In this work, we have proposed a trust management model to improve location privacy of the UWSN. Adaptive Neuro Fuzzy Inference System (ANFIS) has been exploited to evaluate trustworthiness of a sensor node. Also Markov Decision Process (MDP) has been considered. At each state of the MDP, a sensor node evaluates trust behaviour of forwarding node utilizing the FIS learning rules and selects a trusted node. Simulation has been conducted in MATLAB and simulation results show that the detection accuracy of trustworthiness is 91.2% which is greater than Knowledge Discovery and Data Mining (KDD) 99 intrusion detection based dataset. So, in our model 91.2% trustworthiness is necessary to be a trusted node otherwise it will be treated as a malicious or compromised node. Our proposed model can successfully eliminate the possibility of occurring any compromised or malicious node in the network.
2020-07-13
Mahmood, Shah.  2019.  The Anti-Data-Mining (ADM) Framework - Better Privacy on Online Social Networks and Beyond. 2019 IEEE International Conference on Big Data (Big Data). :5780–5788.
The unprecedented and enormous growth of cloud computing, especially online social networks, has resulted in numerous incidents of the loss of users' privacy. In this paper, we provide a framework, based on our anti-data-mining (ADM) principle, to enhance users' privacy against adversaries including: online social networks; search engines; financial terminal providers; ad networks; eavesdropping governments; and other parties who can monitor users' content from the point where the content leaves users' computers to within the data centers of these information accumulators. To achieve this goal, our framework proactively uses the principles of suppression of sensitive data and disinformation. Moreover, we use social-bots in a novel way for enhanced privacy and provide users' with plausible deniability for their photos, audio, and video content uploaded online.
2020-03-23
Rustgi, Pulkit, Fung, Carol.  2019.  Demo: DroidNet - An Android Permission Control Recommendation System Based on Crowdsourcing. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :737–738.
Mobile and web application security, particularly the areas of data privacy, has raised much concerns from the public in recent years. Most applications, or apps for short, are installed without disclosing full information to users and clearly stating what the application has access to, which often raises concern when users become aware of unnecessary information being collected. Unfortunately, most users have little to no technical expertise in regards to what permissions should be turned on and can only rely on their intuition and past experiences to make relatively uninformed decisions. To solve this problem, we developed DroidNet, which is a crowd-sourced Android recommendation tool and framework. DroidNet alleviates privacy concerns and presents users with high confidence permission control recommendations based on the decision from expert users who are using the same apps. This paper explains the general framework, principles, and model behind DroidNet while also providing an experimental setup design which shows the effectiveness and necessity for such a tool.
2020-02-10
Gao, Hongcan, Zhu, Jingwen, Liu, Lei, Xu, Jing, Wu, Yanfeng, Liu, Ao.  2019.  Detecting SQL Injection Attacks Using Grammar Pattern Recognition and Access Behavior Mining. 2019 IEEE International Conference on Energy Internet (ICEI). :493–498.
SQL injection attacks are a kind of the greatest security risks on Web applications. Much research has been done to detect SQL injection attacks by rule matching and syntax tree. However, due to the complexity and variety of SQL injection vulnerabilities, these approaches fail to detect unknown and variable SQL injection attacks. In this paper, we propose a model, ATTAR, to detect SQL injection attacks using grammar pattern recognition and access behavior mining. The most important idea of our model is to extract and analyze features of SQL injection attacks in Web access logs. To achieve this goal, we first extract and customize Web access log fields from Web applications. Then we design a grammar pattern recognizer and an access behavior miner to obtain the grammatical and behavioral features of SQL injection attacks, respectively. Finally, based on two feature sets, machine learning algorithms, e.g., Naive Bayesian, SVM, ID3, Random Forest, and K-means, are used to train and detect our model. We evaluated our model on these two feature sets, and the results show that the proposed model can effectively detect SQL injection attacks with lower false negative rate and false positive rate. In addition, comparing the accuracy of our model based on different algorithms, ID3 and Random Forest have a better ability to detect various kinds of SQL injection attacks.
2020-09-28
Yang, Xinle, Chen, Yang, Chen, Xiaohu.  2019.  Effective Scheme against 51% Attack on Proof-of-Work Blockchain with History Weighted Information. 2019 IEEE International Conference on Blockchain (Blockchain). :261–265.
Proof-of-Work (PoW) is a popular protocol used in Blockchain systems to resolve double-spending problems. However, if an attacker has access to calculation hash power greater than half of the total hash power, this attacker can create a double-spending attack or 51% attack. The cost of creating a 51% attack is surprisingly low if hash power is abundantly available. That posts a great threat to lots of PoW blockchains. We propose a technique to combine history weighted information of miners with the total calculation difficulty to alleviate the 51% attack problem. Analysis indicates that with the new technique, the cost of a traditional attack is increased by two orders of magnitude.
2019-09-23
Zheng, N., Alawini, A., Ives, Z. G..  2019.  Fine-Grained Provenance for Matching ETL. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :184–195.
Data provenance tools capture the steps used to produce analyses. However, scientists must choose among workflow provenance systems, which allow arbitrary code but only track provenance at the granularity of files; provenance APIs, which provide tuple-level provenance, but incur overhead in all computations; and database provenance tools, which track tuple-level provenance through relational operators and support optimization, but support a limited subset of data science tasks. None of these solutions are well suited for tracing errors introduced during common ETL, record alignment, and matching tasks - for data types such as strings, images, etc. Scientists need new capabilities to identify the sources of errors, find why different code versions produce different results, and identify which parameter values affect output. We propose PROVision, a provenance-driven troubleshooting tool that supports ETL and matching computations and traces extraction of content within data objects. PROVision extends database-style provenance techniques to capture equivalences, support optimizations, and enable selective evaluation. We formalize our extensions, implement them in the PROVision system, and validate their effectiveness and scalability for common ETL and matching tasks.
2020-02-17
Rodriguez, Ariel, Okamura, Koji.  2019.  Generating Real Time Cyber Situational Awareness Information Through Social Media Data Mining. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:502–507.
With the rise of the internet many new data sources have emerged that can be used to help us gain insights into the cyber threat landscape and can allow us to better prepare for cyber attacks before they happen. With this in mind, we present an end to end real time cyber situational awareness system which aims to efficiently retrieve security relevant information from the social networking site Twitter.com. This system classifies and aggregates the data retrieved and provides real time cyber situational awareness information based on sentiment analysis and data analytics techniques. This research will assist security analysts to evaluate the level of cyber risk in their organization and proactively take actions to plan and prepare for potential attacks before they happen as well as contribute to the field through a cybersecurity tweet dataset.
2020-03-09
Flores, Denys A., Jhumka, Arshad.  2019.  Hybrid Logical Clocks for Database Forensics: Filling the Gap between Chain of Custody and Database Auditing. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :224–231.
Database audit records are important for investigating suspicious actions against transactional databases. Their admissibility as digital evidence depends on satisfying Chain of Custody (CoC) properties during their generation, collection and preservation in order to prevent their modification, guarantee action accountability, and allow third-party verification. However, their production has relied on auditing capabilities provided by commercial database systems which may not be effective if malicious users (or insiders) misuse their privileges to disable audit controls, and compromise their admissibility. Hence, in this paper, we propose a forensically-aware distributed database architecture that implements CoC properties as functional requirements to produce admissible audit records. The novelty of our proposal is the use of hybrid logical clocks, which compared with a previous centralised vector-clock architecture, has evident advantages as it (i) allows for more accurate provenance and causality tracking of insider actions, (ii) is more scalable in terms of system size, and (iii) although latency is higher (as expected in distributed environments), 70 per cent of user transactions are executed within acceptable latency intervals.
2019-12-09
Gao, Yali, Li, Xiaoyong, Li, Jirui, Gao, Yunquan, Yu, Philip S..  2019.  Info-Trust: A Multi-Criteria and Adaptive Trustworthiness Calculation Mechanism for Information Sources. IEEE Access. 7:13999–14012.
Social media have become increasingly popular for the sharing and spreading of user-generated content due to their easy access, fast dissemination, and low cost. Meanwhile, social media also enable the wide propagation of cyber frauds, which leverage fake information sources to reach an ulterior goal. The prevalence of untrustworthy information sources on social media can have significant negative societal effects. In a trustworthy social media system, trust calculation technology has become a key demand for the identification of information sources. Trust, as one of the most complex concepts in network communities, has multi-criteria properties. However, the existing work only focuses on single trust factor, and does not consider the complexity of trust relationships in social computing completely. In this paper, a multi-criteria trustworthiness calculation mechanism called Info-Trust is proposed for information sources, in which identity-based trust, behavior-based trust, relation-based trust, and feedback-based trust factors are incorporated to present an accuracy-enhanced full view of trustworthiness evaluation of information sources. More importantly, the weights of these factors are dynamically assigned by the ordered weighted averaging and weighted moving average (OWA-WMA) combination algorithm. This mechanism surpasses the limitations of existing approaches in which the weights are assigned subjectively. The experimental results based on the real-world datasets from Sina Weibo demonstrate that the proposed mechanism achieves greater accuracy and adaptability in trustworthiness identification of the network information.
2020-01-21
Novikova, Evgenia, Bekeneva, Yana, Shorov, Andrey.  2019.  The Location-Centric Approach to Employee's Interaction Pattern Detection. 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). :373–378.
The task of the insider threat detection is one of the most sophisticated problems of the information security. The analysis of the logs of the access control system may reveal on how employees move and interact providing thus better understanding on how personnel observe security policies and established business processes. The paper presents an approach to the detection of the location-centric employees' interaction patterns. The authors propose the formal definition of the interaction patterns and present the visualization-driven technique to the extraction of the patterns from the data when any prior information about existing interaction routine and procedures is not available. The proposed approach is demonstrated on the data set provided within VAST MiniChallenge-2 2016 contest.
2020-09-04
Elliott, Sean.  2019.  Nash Equilibrium of Multiple, Non-Uniform Bitcoin Block Withholding Attackers. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :144—151.
This research analyzes a seemingly malicious behavior known as a block withholding (BWH) attack between pools of cryptocurrency miners in Bitcoin-like systems featuring blockchain distributed databases. This work updates and builds on a seminal paper, The Miner's Dilemma, which studied a simplified scenario and showed that a BWH attack can be rational behavior that is profitable for the attacker. The new research presented here provides an in-depth profit analysis of a more complex and realistic BWH attack scenario, which includes mutual attacks between multiple, non-uniform Bitcoin mining pools. As a result of mathematical analysis and MATLAB modeling, this paper illustrates the Nash equilibrium conditions of a system of independent mining pools with varied mining rates and computes the equilibrium rates of mutual BWH attack. The analysis method quantifies the additional profit the largest pools extract from the system at the expense of the smaller pools. The results indicate that while the presence of BWH is a net negative for smaller pools, they must participate in BWH to maximize their remaining profits, and the results quantify the attack rates the smaller pools must maintain. Also, the smallest pools maximize profit by not attacking at all-that is, retaliation is not a rational move for them.
2020-05-18
Bakhtin, Vadim V., Isaeva, Ekaterina V..  2019.  New TSBuilder: Shifting towards Cognition. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :179–181.
The paper reviews a project on the automation of term system construction. TSBuilder (Term System Builder) was developed in 2014 as a multilayer Rosenblatt's perceptron for supervised machine learning, namely 1-3 word terms identification in natural language texts and their rigid categorization. The program is being modified to reduce the rigidity of categorization which will bring text mining more in line with human thinking.We are expanding the range of parameters (semantical, morphological, and syntactical) for categorization, removing the restriction of the term length of three words, using convolution on a continuous sequence of terms, and present the probabilities of a term falling into different categories. The neural network will not assign a single category to a term but give N answers (where N is the number of predefined classes), each of which O ∈ [0, 1] is the probability of the term to belong to a given class.
2020-08-10
Wu, Sha, Liu, Jiajia.  2019.  Overprivileged Permission Detection for Android Applications. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Android applications (Apps) have penetrated almost every aspect of our lives, bring users great convenience as well as security concerns. Even though Android system adopts permission mechanism to restrict Apps from accessing important resources of a smartphone, such as telephony, camera and GPS location, users face still significant risk of privacy leakage due to the overprivileged permissions. The overprivileged permission means the extra permission declared by the App but has nothing to do with its function. Unfortunately, there doesn't exist any tool for ordinary users to detect the overprivileged permission of an App, hence most users grant any permission declared by the App, intensifying the risk of private information leakage. Although some previous studies tried to solve the problem of permission overprivilege, their methods are not applicable nowadays because of the progress of App protection technology and the update of Android system. Towards this end, we develop a user-friendly tool based on frequent item set mining for the detection of overprivileged permissions of Android Apps, which is named Droidtector. Droidtector can operate in online or offline mode and users can choose any mode according to their situation. Finally, we run Droidtector on 1000 Apps crawled from Google Play and find that 479 of them are overprivileged, accounting for about 48% of all the sample Apps.
2020-02-17
Asadi, Nima, Rege, Aunshul, Obradovic, Zoran.  2019.  Pattern Discovery in Intrusion Chains and Adversarial Movement. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–4.
Capturing the patterns in adversarial movement can present crucial insight into team dynamics and organization of cybercrimes. This information can be used for additional assessment and comparison of decision making approaches during cyberattacks. In this study, we propose a data-driven analysis based on time series analysis and social networks to identify patterns and alterations in time allocated to intrusion stages and adversarial movements. The results of this analysis on two case studies of collegiate cybersecurity exercises is provided as well as an analytical comparison of their behavioral trends and characteristics. This paper presents preliminary insight into complexities of individual and group level adversarial movement and decision-making as cyberattacks unfold.
2020-07-27
Tun, May Thet, Nyaung, Dim En, Phyu, Myat Pwint.  2019.  Performance Evaluation of Intrusion Detection Streaming Transactions Using Apache Kafka and Spark Streaming. 2019 International Conference on Advanced Information Technologies (ICAIT). :25–30.
In the information era, the size of network traffic is complex because of massive Internet-based services and rapid amounts of data. The more network traffic has enhanced, the more cyberattacks have dramatically increased. Therefore, cybersecurity intrusion detection has been a challenge in the current research area in recent years. The Intrusion detection system requires high-level protection and detects modern and complex attacks with more accuracy. Nowadays, big data analytics is the main key to solve marketing, security and privacy in an extremely competitive financial market and government. If a huge amount of stream data flows within a short period time, it is difficult to analyze real-time decision making. Performance analysis is extremely important for administrators and developers to avoid bottlenecks. The paper aims to reduce time-consuming by using Apache Kafka and Spark Streaming. Experiments on the UNSWNB-15 dataset indicate that the integration of Apache Kafka and Spark Streaming can perform better in terms of processing time and fault-tolerance on the huge amount of data. According to the results, the fault tolerance can be provided by the multiple brokers of Kafka and parallel recovery of Spark Streaming. And then, the multiple partitions of Apache Kafka increase the processing time in the integration of Apache Kafka and Spark Streaming.
2020-08-03
Juuti, Mika, Szyller, Sebastian, Marchal, Samuel, Asokan, N..  2019.  PRADA: Protecting Against DNN Model Stealing Attacks. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :512–527.
Machine learning (ML) applications are increasingly prevalent. Protecting the confidentiality of ML models becomes paramount for two reasons: (a) a model can be a business advantage to its owner, and (b) an adversary may use a stolen model to find transferable adversarial examples that can evade classification by the original model. Access to the model can be restricted to be only via well-defined prediction APIs. Nevertheless, prediction APIs still provide enough information to allow an adversary to mount model extraction attacks by sending repeated queries via the prediction API. In this paper, we describe new model extraction attacks using novel approaches for generating synthetic queries, and optimizing training hyperparameters. Our attacks outperform state-of-the-art model extraction in terms of transferability of both targeted and non-targeted adversarial examples (up to +29-44 percentage points, pp), and prediction accuracy (up to +46 pp) on two datasets. We provide take-aways on how to perform effective model extraction attacks. We then propose PRADA, the first step towards generic and effective detection of DNN model extraction attacks. It analyzes the distribution of consecutive API queries and raises an alarm when this distribution deviates from benign behavior. We show that PRADA can detect all prior model extraction attacks with no false positives.
2020-07-30
He, Yongzhong, Zhao, Xiaojuan, Wang, Chao.  2019.  Privacy Mining of Large-scale Mobile Usage Data. 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :81—86.
While enjoying the convenience brought by mobile phones, users have been exposed to high risk of private information leakage. It is known that many applications on mobile devices read private data and send them to remote servers. However how, when and in what scale the private data are leaked are not investigated systematically in the real-world scenario. In this paper, a framework is proposed to analyze the usage data from mobile devices and the traffic data from the mobile network and make a comprehensive privacy leakage detection and privacy inference mining on a large scale of realworld mobile data. Firstly, this paper sets up a training dataset and trains a privacy detection model on mobile traffic data. Then classical machine learning tools are used to discover private usage patterns. Based on our experiments and data analysis, it is found that i) a large number of private information is transmitted in plaintext, and even passwords are transmitted in plaintext by some applications, ii) more privacy types are leaked in Android than iOS, while GPS location is the most leaked privacy in both Android and iOS system, iii) the usage pattern is related to mobile device price. Through our experiments and analysis, it can be concluded that mobile privacy leakage is pervasive and serious.