Biblio
Cybercrimes today are focused over returns, especially in the form of monetary returns. In this paper - through a literature study and conducting interviews for the people victimized by ransomware and a survey with random set of victimized and non-victimized by ransomware - conclusions about the dependence of ransomware on demographics like age and education areshown. Increasing threats due to ease of transfer of ransomware through internet arealso discussed. Finally, low level awarenessamong company professionals is confirmed and reluctance to payment on being a victim is found as a common trait.
In this paper we propose Mastino, a novel defense system to detect malware download events. A download event is a 3-tuple that identifies the action of downloading a file from a URL that was triggered by a client (machine). Mastino utilizes global situation awareness and continuously monitors various network- and system-level events of the clients' machines across the Internet and provides real time classification of both files and URLs to the clients upon submission of a new, unknown file or URL to the system. To enable detection of the download events, Mastino builds a large download graph that captures the subtle relationships among the entities of download events, i.e. files, URLs, and machines. We implemented a prototype version of Mastino and evaluated it in a large-scale real-world deployment. Our experimental evaluation shows that Mastino can accurately classify malware download events with an average of 95.5% true positive (TP), while incurring less than 0.5% false positives (FP). In addition, we show the Mastino can classify a new download event as either benign or malware in just a fraction of a second, and is therefore suitable as a real time defense system.
We propose a formalism to model database-driven systems, called database manipulating systems (DMS). The actions of a (DMS) modify the current instance of a relational database by adding new elements into the database, deleting tuples from the relations and adding tuples to the relations. The elements which are modified by an action are chosen by (full) first-order queries. (DMS) is a highly expressive model and can be thought of as a succinct representation of an infinite state relational transition system, in line with similar models proposed in the literature. We propose monadic second order logic (MSO-FO) to reason about sequences of database instances appearing along a run. Unsurprisingly, the linear-time model checking problem of (DMS) against (MSO-FO) is undecidable. Towards decidability, we propose under-approximate model checking of (DMS), where the under-approximation parameter is the "bound on recency". In a k-recency-bounded run, only the most recent k elements in the current active domain may be modified by an action. More runs can be verified by increasing the bound on recency. Our main result shows that recency-bounded model checking of (DMS) against (MSO-FO) is decidable, by a reduction to the satisfiability problem of MSO over nested words.
With recent advances in consumer electronics and the increasingly urgent need for public security, camera networks have evolved from their early role of providing simple and static monitoring to current complex systems capable of obtaining extensive video information for intelligent processing, such as target localization, identification, and tracking. In all cases, it is of vital importance that the optimal camera configuration (i.e., optimal location, orientation, etc.) is determined before cameras are deployed as a suboptimal placement solution will adversely affect intelligent video surveillance and video analytic algorithms. The optimal configuration may also provide substantial savings on the total number of cameras required to achieve the same level of utility. In this article, we examine most, if not all, of the recent approaches (post 2000) addressing camera placement in a structured manner. We believe that our work can serve as a first point of entry for readers wishing to start researching into this area or engineers who need to design a camera system in practice. To this end, we attempt to provide a complete study of relevant formulation strategies and brief introductions to most commonly used optimization techniques by researchers in this field. We hope our work to be inspirational to spark new ideas in the field.
Text mining has developed and emerged as an essential tool for revealing the hidden value in the data. Text mining is an emerging technique for companies around the world and suitable for large enduring analyses and discrete investigations. Since there is a need to track disrupting technologies, explore internal knowledge bases or review enormous data sets. Most of the information produced due to conversation transcripts is an unstructured format. These data have ambiguity, redundancy, duplications, typological errors and many more. The processing and analysis of these unstructured data are difficult task. But, there are several techniques in text mining are available to extract keywords from these unstructured conversation transcripts. Keyword Extraction is the process of examining the most significant word in the context which helps to take decisions in a much faster manner. The main objective of the proposed work is extracting the keywords from meeting transcripts by using the Swarm Intelligence (SI) techniques. Here Stochastic Diffusion Search (SDS) algorithm is used for keyword extraction and Firefly algorithm used for clustering. These techniques will be implemented for an extensive range of optimization problems and produced better results when compared with existing technique.
The Netflix experience is driven by a number of recommendation algorithms: personalized ranking, page generation, similarity, ratings, search, etc. On the January 6th, 2016 we simultaneously launched Netflix in 130 new countries around the world, which brought the total to over 190 countries. Preparing for such a rapid expansion while ensuring each algorithm was ready to work seamlessly created new challenges for our recommendation and search teams. In this talk, we will highlight the four most interesting challenges we encountered in making our algorithms operate globally and how this improved our ability to connect members worldwide with stories they'll love. In particular, we will dive into the problems of uneven availability across catalogs, balancing personal and cultural tastes, handling language, and tracking quality of recommendations. Uneven catalog availability is a challenge because many recommendation algorithms assume that people could interact with any item and then use the absence of interaction implicitly or explicitly as negative information in the model. However, this assumption does not hold globally and across time where item availability differs. Running algorithms globally means needing a notion of location so that we can handle local variations in taste while also providing a good basis for personalization. Language is another challenge in recommending video content because people can typically only enjoy content that has assets (audio, subtitles) in languages they understand. The preferences for how people enjoy such content also vary between people and depend on their familiarity with a language. Also, while would like our recommendations to work well for every one of our members, tracking quality becomes difficult because with so many members in so many countries speaking so many languages, it can be hard to determine when an algorithm or system is performing sub-optimally for some subset of them. Thus, to support this global launch, we examined each and every algorithm that is part of our service and began to address these challenges.
Provenance for transactional updates is critical for many applications such as auditing and debugging of transactions. Recently, we have introduced MV-semirings, an extension of the semiring provenance model that supports updates and transactions. Furthermore, we have proposed reenactment, a declarative form of replay with provenance capture, as an efficient and non-invasive method for computing this type of provenance. However, this approach is limited to the snapshot isolation (SI) concurrency control protocol while many real world applications apply the read committed version of snapshot isolation (RC-SI) to improve performance at the cost of consistency. We present non trivial extensions of the model and reenactment approach to be able to compute provenance of RC-SI transactions efficiently. In addition, we develop techniques for applying reenactment across multiple RC-SI transactions. Our experiments demonstrate that our implementation in the GProM system supports efficient re-construction and querying of provenance.
By reflecting the degree of proximity or remoteness of documents, similarity measure plays the key role in text analytics. Traditional measures, e.g. cosine similarity, assume that documents are represented in an orthogonal space formed by words as dimensions. Words are considered independent from each other and document similarity is computed based on lexical overlap. This assumption is also made in the bag of concepts representation of documents while the space is formed by concepts. This paper proposes new semantic similarity measures without relying on the orthogonality assumption. By employing Wikipedia as an external resource, we introduce five similarity measures using concept-concept relatedness. Experimental results on real text datasets reveal that eliminating the orthogonality assumption improves the quality of text clustering algorithms.
Different wireless Peer-to-Peer (P2P) routing protocols rely on cooperative protocols of interaction among peers, yet, most of the surveyed provide little detail on how the peers can take into consideration the peers' reliability for improving routing efficiency in collaborative networks. Previous research has shown that in most of the trust and reputation evaluation schemes, the peers' rating behaviour can be improved to include the peers' attributes for understanding peers' reliability. This paper proposes a reliability based trust model for dynamic trust evaluation between the peers in P2P networks for collaborative routing. Since the peers' routing attributes vary dynamically, our proposed model must also accommodate the dynamic changes of peers' attributes and behaviour. We introduce peers' buffers as a scaling factor for peers' trust evaluation in the trust and reputation routing protocols. The comparison between reliability and non-reliability based trust models using simulation shows the improved performance of our proposed model in terms of delivery ratio and average message latency.
We present ReproZip, the recommended packaging tool for the SIGMOD Reproducibility Review. ReproZip was designed to simplify the process of making an existing computational experiment reproducible across platforms, even when the experiment was put together without reproducibility in mind. The tool creates a self-contained package for an experiment by automatically tracking and identifying all its required dependencies. The researcher can share the package with others, who can then use ReproZip to unpack the experiment, reproduce the findings on their favorite operating system, as well as modify the original experiment for reuse in new research, all with little effort. The demo will consist of examples of non-trivial experiments, showing how these can be packed in a Linux machine and reproduced on different machines and operating systems. Demo visitors will also be able to pack and reproduce their own experiments.
Based on Storm, a distributed, reliable, fault-tolerant real-time data stream processing system, we propose a recognition system of web intrusion detection. The system is based on machine learning, feature selection algorithm by TF-IDF(Term Frequency–Inverse Document Frequency) and the optimised cosine similarity algorithm, at low false positive rate and a higher detection rate of attacks and malicious behavior in real-time to protect the security of user data. From comparative analysis of experiments we find that the system for intrusion recognition rate and false positive rate has improved to some extent, it can be better to complete the intrusion detection work.
In order to realize the accurate positioning and recognition effectively of the analog circuit, the feature extraction of fault information is an extremely important port. This arrival based on the experimental circuit which is designed as a failure mode to pick-up the fault sample set. We have chosen two methods, one is the combination of wavelet transform and principal component analysis, the other is the factorial analysis for the fault data's feature extraction, and we also use the extreme learning machine to train and diagnose the data, to compare the performance of these two methods through the accuracy of the diagnosis. The results of the experiment shows that the data which we get from the experimental circuit, after dealing with these two methods can quickly get the fault location.
When focusing on the Internet of Things (IoT), communicating and coordinating sensor–actuator data via the cloud involves inefficient overheads and reduces autonomous behavior. The Fog Computing paradigm essentially moves the compute nodes closer to sensing entities by exploiting peers and intermediary network devices. This reduces centralized communication with the cloud and entails increased coordination between sensing entities and (possibly available) smart network gateway devices. In this paper, we analyze the utility of offloading computation among peers when working in fog based deployments. It is important to study the trade-offs involved with such computation offloading, as we deal with resource (energy, computation capacity) limited devices. Devices computing in a distributed environment may choose to locally compute part of their data and communicate the remainder to their peers. An optimization formulation is presented that is applied to various deployment scenarios, taking the computation and communication overheads into account. Our technique is demonstrated on a network of robotic sensor–actuators developed on the ROS (Robot Operating System) platform, that coordinate over the fog to complete a task. We demonstrate 77.8% latency and 54% battery usage improvements over large computation tasks, by applying this optimal offloading.
Thanks to their anonymity (pseudonymity) and elimination of trusted intermediaries, cryptocurrencies such as Bitcoin have created or stimulated growth in many businesses and communities. Unfortunately, some of these are criminal, e.g., money laundering, illicit marketplaces, and ransomware. Next-generation cryptocurrencies such as Ethereum will include rich scripting languages in support of smart contracts, programs that autonomously intermediate transactions. In this paper, we explore the risk of smart contracts fueling new criminal ecosystems. Specifically, we show how what we call criminal smart contracts (CSCs) can facilitate leakage of confidential information, theft of cryptographic keys, and various real-world crimes (murder, arson, terrorism). We show that CSCs for leakage of secrets (a la Wikileaks) are efficiently realizable in existing scripting languages such as that in Ethereum. We show that CSCs for theft of cryptographic keys can be achieved using primitives, such as Succinct Non-interactive ARguments of Knowledge (SNARKs), that are already expressible in these languages and for which efficient supporting language extensions are anticipated. We show similarly that authenticated data feeds, an emerging feature of smart contract systems, can facilitate CSCs for real-world crimes (e.g., property crimes). Our results highlight the urgency of creating policy and technical safeguards against CSCs in order to realize the promise of smart contracts for beneficial goals.
The automotive industry is experiencing a paradigm shift towards autonomous and connected vehicles. Coupled with the increasing usage and complexity of electrical and/or electronic systems, this introduces new safety and security risks. Encouragingly, the automotive industry has relatively well-known and standardised safety risk management practices, but security risk management is still in its infancy. In order to facilitate the derivation of security requirements and security measures for automotive embedded systems, we propose a specifically tailored risk assessment framework, and we demonstrate its viability with an industry use-case. Some of the key features are alignment with existing processes for functional safety, and usability for non-security specialists. The framework begins with a threat analysis to identify the assets, and threats to those assets. The following risk assessment process consists of an estimation of the threat level and of the impact level. This step utilises several existing standards and methodologies, with changes where necessary. Finally, a security level is estimated which is used to formulate high-level security requirements. The strong alignment with existing standards and processes should make this framework well-suited for the needs in the automotive industry.
Offloading computationally expensive Simultaneous Localization and Mapping (SLAM) task for mobile robots have attracted significant attention during the last few years. Lack of powerful on-board compute capability in these energy constrained mobile robots and rapid advancement in compute cloud access technologies laid the foundation for development of several Cloud Robotics platforms that enabled parallel execution of computationally expensive robotic algorithms, especially involving multiple robots. In this work the Cloud Robotics concept is extended to include the current emphasis of computing at the network edge nodes along with the Cloud. The requirements and advantages of using edge nodes for computation offloading over remote cloud or local robot clusters are discussed with reference to the ETSI 'Mobile-Edge Computing' initiative and OpenFog Consortium's 'OpenFog Architecture'. A Particle Filter algorithm for SLAM is modified and implemented for offloading in a multi-tier edge+cloud setup. Additionally a model is proposed for offloading decision in such a setup with experiments and results demonstrating the efficacy of the proposed dynamic offloading scheme over static offloading strategies.
Motivated by the growing complexity and heterogeneity of modern data centers, and the prevalence of commodity component failures, this paper studies the failure-aware placement problem of placing tasks of a parallel job on machines in the data center with the goal of increasing availability. We consider two models of failures: adversarial and probabilistic. In the adversarial model, each node has a weight (higher weight implying higher reliability) and the adversary can remove any subset of nodes of total weight at most a given bound W and our goal is to find a placement that incurs the least disruption against such an adversary. In the probabilistic model, each node has a probability of failure and we need to find a placement that maximizes the probability that at least K out of N tasks survive at any time. For adversarial failures, we first show that (i) the problems are in Σ2, the second level of the polynomial hierarchy, (ii) a basic variant, that we call RobustFAP, is co-NP-hard, and (iii) an all-or-nothing version of RobustFAP is Σ2-complete. We then give a PTAS for RobustFAP, a key ingredient of which is a solution that we design for a fractional version of RobustFAP. We then study fractional RobustFAP over hierarchies, denoted HierRobustFAP, and introduce a notion of hierarchical max-min fairness/ and a novel Generalized Spreading/ algorithm which is simultaneously optimal for all W. These generalize the classical notion of max-min fairness to work with nodes of differing capacities, differing reliability weights and hierarchical structures. Using randomized rounding, we extend this to give an algorithm for integral HierRobustFAP. For the probabilistic version, we first give an algorithm that achieves an additive ε approximation in the failure probability for the single level version, called ProbFAP, while giving up a (1 + ε) multiplicative factor in the number of failures. We then extend the result to the hierarchical version, HierProbFAP, achieving an ε additive approximation in failure probability while giving up an (L + ε) multiplicative factor in the number of failures, where \$L\$ is the number of levels in the hierarchy.
Large scale sensor networks are ubiquitous nowadays. An important objective of deploying sensors is to detect anomalies in the monitored system or infrastructure, which allows remedial measures to be taken to prevent failures, inefficiencies, and security breaches. Most existing sensor anomaly detection methods are local, i.e., they do not capture the global dependency structure of the sensors, nor do they perform well in the presence of missing or erroneous data. In this paper, we propose an anomaly detection technique for large scale sensor data that leverages relationships between sensors to improve robustness even when data is missing or erroneous. We develop a probabilistic graphical model-based global outlier detection technique that represents a sensor network as a pairwise Markov Random Field and uses graphical model inference to detect anomalies. We show our model is more robust than local models, and detects anomalies with 90% accuracy even when 50% of sensors are erroneous. We also build a synthetic graphical model generator that preserves statistical properties of a real data set to test our outlier detection technique at scale.
Nowadays, the principle of image mining plays a vital role in various areas of our life, where numerous frameworks based on image mining are proposed for object recognition, object tracking, sensing images and medical image diagnosis. Nevertheless, the research in the image authentication based on image mining is still confined. Therefore, this paper comes to present an efficient engagement between the frequent pattern mining and digital watermarking to contribute significantly in the authentication of images transmitted via public networks. The proposed framework exploits some robust features of image to extract the frequent patterns in the image data. The maximal relevant patterns are used to discriminate between the textured and smooth blocks within the image, where the texture blocks are more appropriate to embed the secret data than smooth blocks. The experiment's result proves the efficiency of the proposed framework in terms of stabilization and robustness against different kind of attacks. The results are interesting and remarkable to preserve the image authentication.
Some of the common works like, upload and retrieval of data, buying and selling things, earning and donating or transaction of money etc., are the most common works performed in daily life through internet. For every user who is accessing the internet regularly, their highest priority is to make sure that there data is secured. Users are willing to pay huge amount of money to the service provider for maintaining the security. But the intention of malicious users is to access and misuse others data. For that they are using zombie bots. Always Bots are not the only malicious, legitimate authorized user can also impersonate to access the data illegally. This makes the job tougher to discriminate between the bots and boots. For providing security form that threats, here we are proposing a novel RSJ Approach by User Authentication. RSJ approach is a secure way for providing the security to the user form both bots and malicious users.
As web applications is becoming more prominent due to the ubiquity of web services, web applications have become main targets for attackers. In order to steal or leak sensitive user data managed by web applications, attackers exploit a wide range of input validation vulnerabilities such as SQL injection, path traversal (or directory traversal), cross-site scripting (XSS), etc. This paper propose a technique that can verify input values of Java-based web applications using static bytecode instrumentation and runtime input validation. The technique searches for target methods or object constructors in compiled Java class files, and statically inserts bytecode modules. At runtime, the instrumented bytecode modules validate input values of the targets, and take countermeasure against malicious inputs. The proposed technique can mitigate the input validation vulnerabilities in Java-based web applications without source codes. To evaluate the effectiveness of the proposed technique, experiments are carried out with an insecure web application maintained by OWASP WebGoat Project. The experimental results show that the proposed technique successfully mitigates input validation vulnerabilities such as SQL injection and path traversal.
This paper presents a detection and containment mechanism for fast self-propagating network worm malware. The detection part of the mechanism uses two categories of network host activities to identify worm behaviour in a network. Upon an identified worm activity in a network, a data-link containment system is used to isolate the internal source of infection, and a network level containment system is used to block inbound worm datagrams. The mechanism has been demonstrated using a software prototype. A number of worm experiments have been conducted to evaluate the prototype. The empirical results show the effectiveness of the developed mechanism in containing fast network worm malware at an early stage with almost no false positives.
Tor is a popular network for anonymous communication. The usage and operation of Tor is not well-understood, however, because its privacy goals make common measurement approaches ineffective or risky. We present PrivCount, a system for measuring the Tor network designed with user privacy as a primary goal. PrivCount securely aggregates measurements across Tor relays and over time to produce differentially private outputs. PrivCount improves on prior approaches by enabling flexible exploration of many diverse kinds of Tor measurements while maintaining accuracy and privacy for each. We use PrivCount to perform a measurement study of Tor of sufficient breadth and depth to inform accurate models of Tor users and traffic. Our results indicate that Tor has 710,000 users connected but only 550,000 active at a given time, that Web traffic now constitutes 91% of data bytes on Tor, and that the strictness of relays' connection policies significantly affects the type of application data they forward.
Recent literature on iOS security has focused on the malicious potential of third-party applications, demonstrating how developers can bypass application vetting and code-level protections. In addition to these protections, iOS uses a generic sandbox profile called "container" to confine malicious or exploited third-party applications. In this paper, we present the first systematic analysis of the iOS container sandbox profile. We propose the SandScout framework to extract, decompile, formally model, and analyze iOS sandbox profiles as logic-based programs. We use our Prolog-based queries to evaluate file-based security properties of the container sandbox profile for iOS 9.0.2 and discover seven classes of exploitable vulnerabilities. These attacks affect non-jailbroken devices running later versions of iOS. We are working with Apple to resolve these attacks, and we expect that SandScout will play a significant role in the development of sandbox profiles for future versions of iOS.