Biblio

Found 5756 results

Filters: Keyword is Human Behavior  [Clear All Filters]
2023-03-03
Tao, Jingjing, Zhang, Mingsheng.  2022.  Development of Key Technologies of Legal Case Management Information System Based on J2EE. 2022 International Conference on Innovation, Knowledge, and Management (ICIKM). :49–53.
With the development of society, people have higher and higher requirements for the quality of life, and the management of legal cases has become more and more important. In this case, the research on how to realize electronization and networking has become the inevitable demand of the current information age. Therefore, this paper designs and develops the legal case management information system based on J2EE. Firstly, this paper introduces the related technologies of J2EE, then expounds the importance of legal case management informatization, and designs the legal case management information system according to the technical framework of J2EE. Finally, the performance of the system is tested. The test results show that the load capacity of the system is strong, the response time is 2–4 seconds, the resource utilization is relatively low, and the number of concurrent users is maintained at about 150. These show that the performance of the system fully meets the needs of legal case information management.
Yuan, Wen.  2022.  Development of Key Technologies of Legal Case Management Information System Considering QoS Optimization. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :693–696.
This paper conducts the development of the key technologies of the legal case management information system considering QoS optimization. The designed system administrator can carry out that the all-round management of the system, including account management, database management, security setting management, core data entry management, and data statistics management. With this help, the QoS optimization model is then integrated to improve the systematic performance of the system as the key technology. Similar to the layering in the data source, the data set is composed of the fields of the data set, and contains the relevant information of the attribute fields of various entity element categories. Furthermore, the designed system is analyzed and implemented on the public data sets to show the results.
2023-02-03
Sudarsan, Sreelakshmi Vattaparambil, Schelén, Olov, Bodin, Ulf, Nyström, Nicklas.  2022.  Device Onboarding in Eclipse Arrowhead Using Power of Attorney Based Authorization. 2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :26–32.
Large-scale onboarding of industrial cyber physical systems requires efficiency and security. In situations with the dynamic addition of devices (e.g., from subcontractors entering a workplace), automation of the onboarding process is desired. The Eclipse Arrowhead framework, which provides a platform for industrial automation, requires reliable, flexible, and secure device onboarding to local clouds. In this paper, we propose a device onboarding method in the Arrowhead framework where decentralized authorization is provided by Power of Attorney. The model allows users to subgrant power to trusted autonomous devices to act on their behalf. We present concepts, an implementation of the proposed system, and a use case for scalable onboarding where Powers of Attorney at two levels are used to allow a subcontractor to onboard its devices to an industrial site. We also present performance evaluation results.
ISSN: 2378-4873
2023-06-30
Subramanian, Rishabh.  2022.  Differential Privacy Techniques for Healthcare Data. 2022 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). :95–100.
This paper analyzes techniques to enable differential privacy by adding Laplace noise to healthcare data. First, as healthcare data contain natural constraints for data to take only integral values, we show that drawing only integral values does not provide differential privacy. In contrast, rounding randomly drawn values to the nearest integer provides differential privacy. Second, when a variable is constructed using two other variables, noise must be added to only one of them. Third, if the constructed variable is a fraction, then noise must be added to its constituent private variables, and not to the fraction directly. Fourth, the accuracy of analytics following noise addition increases with the privacy budget, ϵ, and the variance of the independent variable. Finally, the accuracy of analytics following noise addition increases disproportionately with an increase in the privacy budget when the variance of the independent variable is greater. Using actual healthcare data, we provide evidence supporting the two predictions on the accuracy of data analytics. Crucially, to enable accuracy of data analytics with differential privacy, we derive a relationship to extract the slope parameter in the original dataset using the slope parameter in the noisy dataset.
Mimoto, Tomoaki, Hashimoto, Masayuki, Yokoyama, Hiroyuki, Nakamura, Toru, Isohara, Takamasa, Kojima, Ryosuke, Hasegawa, Aki, Okuno, Yasushi.  2022.  Differential Privacy under Incalculable Sensitivity. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :27–31.
Differential privacy mechanisms have been proposed to guarantee the privacy of individuals in various types of statistical information. When constructing a probabilistic mechanism to satisfy differential privacy, it is necessary to consider the impact of an arbitrary record on its statistics, i.e., sensitivity, but there are situations where sensitivity is difficult to derive. In this paper, we first summarize the situations in which it is difficult to derive sensitivity in general, and then propose a definition equivalent to the conventional definition of differential privacy to deal with them. This definition considers neighboring datasets as in the conventional definition. Therefore, known differential privacy mechanisms can be applied. Next, as an example of the difficulty in deriving sensitivity, we focus on the t-test, a basic tool in statistical analysis, and show that a concrete differential privacy mechanism can be constructed in practice. Our proposed definition can be treated in the same way as the conventional differential privacy definition, and can be applied to cases where it is difficult to derive sensitivity.
2023-08-17
Song, Zhiming, Yu, Yimin.  2022.  The Digital Identity Management System Model Based on Blockchain. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :131—137.
Digital identity management system is the securi-ty infrastructure of computer and internet applications. However, currently, most of the digital identity management systems are faced with problems such as the difficulty of cross-domain authentication and interoperation, the lack of credibility of identity authentication, the weakness of the security of identity data. Although the advantages of block-chain technology have attached the attentions of experts and scholars in the field of digital identity management and many digital identity management systems based on block-chain have been built, the systems still can't completely solve the problems mentioned above. Therefore, in this pa-per, an effective digital identity management system model is proposed which combines technologies of self-sovereign identity and oracle with blockchain so as to pave a way in solving the problems mentioned above and constructing a secure and reliable digital identity management system.
2023-02-03
Saha, Akashdeep, Chatterjee, Urbi, Mukhopadhyay, Debdeep, Chakraborty, Rajat Subhra.  2022.  DIP Learning on CAS-Lock: Using Distinguishing Input Patterns for Attacking Logic Locking. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :688–693.
The globalization of the integrated circuit (IC) manufacturing industry has lured the adversary to come up with numerous malicious activities in the IC supply chain. Logic locking has risen to prominence as a proactive defense strategy against such threats. CAS-Lock (proposed in CHES'20), is an advanced logic locking technique that harnesses the concept of single-point function in providing SAT-attack resiliency. It is claimed to be powerful and efficient enough in mitigating existing state-of-the-art attacks against logic locking techniques. Despite the security robustness of CAS-Lock as claimed by the authors, we expose a serious vulnerability and by exploiting the same we devise a novel attack algorithm against CAS-Lock. The proposed attack can not only reveal the correct key but also the exact AND/OR structure of the implemented CAS-Lock design along with all the key gates utilized in both the blocks of CAS-Lock. It simply relies on the externally observable Distinguishing Input Patterns (DIPs) pertaining to a carefully chosen key simulation of the locked design without the requirement of structural analysis of any kind of the locked netlist. Our attack is successful against various AND/OR cascaded-chain configurations of CAS-Lock and reports 100% success rate in recovering the correct key. It has an attack complexity of \$\textbackslashmathcalO(m)\$, where \$m\$ denotes the number of DIPs obtained for an incorrect key simulation.
ISSN: 1558-1101
2023-06-09
Williams, Daniel, Clark, Chelece, McGahan, Rachel, Potteiger, Bradley, Cohen, Daniel, Musau, Patrick.  2022.  Discovery of AI/ML Supply Chain Vulnerabilities within Automotive Cyber-Physical Systems. 2022 IEEE International Conference on Assured Autonomy (ICAA). :93—96.
Steady advancement in Artificial Intelligence (AI) development over recent years has caused AI systems to become more readily adopted across industry and military use-cases globally. As powerful as these algorithms are, there are still gaping questions regarding their security and reliability. Beyond adversarial machine learning, software supply chain vulnerabilities and model backdoor injection exploits are emerging as potential threats to the physical safety of AI reliant CPS such as autonomous vehicles. In this work in progress paper, we introduce the concept of AI supply chain vulnerabilities with a provided proof of concept autonomous exploitation framework. We investigate the viability of algorithm backdoors and software third party library dependencies for applicability into modern AI attack kill chains. We leverage an autonomous vehicle case study for demonstrating the applicability of our offensive methodologies within a realistic AI CPS operating environment.
2023-09-20
Abdullah, Muhammed Amin, Yu, Yongbin, Cai, Jingye, Imrana, Yakubu, Tettey, Nartey Obed, Addo, Daniel, Sarpong, Kwabena, Agbley, Bless Lord Y., Appiah, Benjamin.  2022.  Disparity Analysis Between the Assembly and Byte Malware Samples with Deep Autoencoders. 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :1—4.
Malware attacks in the cyber world continue to increase despite the efforts of Malware analysts to combat this problem. Recently, Malware samples have been presented as binary sequences and assembly codes. However, most researchers focus only on the raw Malware sequence in their proposed solutions, ignoring that the assembly codes may contain important details that enable rapid Malware detection. In this work, we leveraged the capabilities of deep autoencoders to investigate the presence of feature disparities in the assembly and raw binary Malware samples. First, we treated the task as outliers to investigate whether the autoencoder would identify and justify features as samples from the same family. Second, we added noise to all samples and used Deep Autoencoder to reconstruct the original samples by denoising. Experiments with the Microsoft Malware dataset showed that the byte samples' features differed from the assembly code samples.
2023-05-12
Jain, Raghav, Saha, Tulika, Chakraborty, Souhitya, Saha, Sriparna.  2022.  Domain Infused Conversational Response Generation for Tutoring based Virtual Agent. 2022 International Joint Conference on Neural Networks (IJCNN). :1–8.
Recent advances in deep learning typically, with the introduction of transformer based models has shown massive improvement and success in many Natural Language Processing (NLP) tasks. One such area which has leveraged immensely is conversational agents or chatbots in open-ended (chit-chat conversations) and task-specific (such as medical or legal dialogue bots etc.) domains. However, in the era of automation, there is still a dearth of works focused on one of the most relevant use cases, i.e., tutoring dialog systems that can help students learn new subjects or topics of their interest. Most of the previous works in this domain are either rule based systems which require a lot of manual efforts or are based on multiple choice type factual questions. In this paper, we propose EDICA (Educational Domain Infused Conversational Agent), a language tutoring Virtual Agent (VA). EDICA employs two mechanisms in order to converse fluently with a student/user over a question and assist them to learn a language: (i) Student/Tutor Intent Classification (SIC-TIC) framework to identify the intent of the student and decide the action of the VA, respectively, in the on-going conversation and (ii) Tutor Response Generation (TRG) framework to generate domain infused and intent/action conditioned tutor responses at every step of the conversation. The VA is able to provide hints, ask questions and correct student's reply by generating an appropriate, informative and relevant tutor response. We establish the superiority of our proposed approach on various evaluation metrics over other baselines and state of the art models.
ISSN: 2161-4407
2023-06-30
Shi, Er-Mei, Liu, Jia-Xi, Ji, Yuan-Ming, Chang, Liang.  2022.  DP-BEGAN: A Generative Model of Differential Privacy Algorithm. 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI). :168–172.
In recent years, differential privacy has gradually become a standard definition in the field of data privacy protection. Differential privacy does not need to make assumptions about the prior knowledge of privacy adversaries, so it has a more stringent effect than existing privacy protection models and definitions. This good feature has been used by researchers to solve the in-depth learning problem restricted by the problem of privacy and security, making an important breakthrough, and promoting its further large-scale application. Combining differential privacy with BEGAN, we propose the DP-BEGAN framework. The differential privacy is realized by adding carefully designed noise to the gradient of Gan model training, so as to ensure that Gan can generate unlimited synthetic data that conforms to the statistical characteristics of source data and does not disclose privacy. At the same time, it is compared with the existing methods on public datasets. The results show that under a certain privacy budget, this method can generate higher quality privacy protection data more efficiently, which can be used in a variety of data analysis tasks. The privacy loss is independent of the amount of synthetic data, so it can be applied to large datasets.
2023-09-01
Lan, James Kin Wah, Lee, Frankie Kin Wah.  2022.  Drone Forensics: A Case Study on DJI Mavic Air 2. 2022 24th International Conference on Advanced Communication Technology (ICACT). :291—296.
With the inundation of more cost effective and improved flight performance Unmanned Aerial Vehicles (UAVs) into the consumer market, we have seen more uses of these for both leisure and business purposes. As such, demand for digital forensic examination on these devices has seen an increase as well. This research will explore and discuss the forensic examination process on one of the more popular brands of UAV in Singapore, namely DJI. The findings are from the examination of the exposed File Transfer Protocol (FTP) channel and the extraction of the Data-at-Rest on the memory chip of the drone. The extraction was done using the Chip-Off and Chip-On technique.
2023-03-03
S, Bakkialakshmi V., Sudalaimuthu, T..  2022.  Dynamic Cat-Boost Enabled Keystroke Analysis for User Stress Level Detection. 2022 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES). :556–560.
The impact of digital gadgets is enormous in the current Internet world because of the easy accessibility, flexibility and time-saving benefits for the consumers. The number of computer users is increasing every year. Meanwhile, the time spent and the computers also increased. Computer users browse the internet for various information gathering and stay on the internet for a long time without control. Nowadays working people from home also spend time with the smart devices, computers, and laptops, for a longer duration to complete professional work, personal work etc. the proposed study focused on deriving the impact factors of Smartphones by analyzing the keystroke dynamics Based on the usage pattern of keystrokes the system evaluates the stress level detection using machine learning techniques. In the proposed study keyboard users are intended for testing purposes. Volunteers of 200 members are collectively involved in generating the test dataset. They are allowed to sit for a certain frame of time to use the laptop in the meanwhile the keystroke of the Mouse and keyboard are recorded. The system reads the dataset and trains the model using the Dynamic Cat-Boost algorithm (DCB), which acts as the classification model. The evaluation metrics are framed by calculating Euclidean distance (ED), Manhattan Distance (MahD), Mahalanobis distance (MD) etc. Quantitative measures of DCB are framed through Accuracy, precision and F1Score.
2023-03-17
Ayoub, Harith Ghanim.  2022.  Dynamic Iris-Based Key Generation Scheme during Iris Authentication Process. 2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM). :364–368.
The robustness of the encryption systems in all of their types depends on the key generation. Thus, an encryption system can be said robust if the generated key(s) are very complex and random which prevent attackers or other analytical tools to break the encryption system. This paper proposed an enhanced key generation based on iris image as biometric, to be implemented dynamically in both of authentication process and data encryption. The captured iris image during the authentication process will be stored in a cloud server to be used in the next login to decrypt data. While in the current login, the previously stored iris image in the cloud server would be used to decrypt data in the current session. The results showed that the generated key meets the required randomness for several NIST tests that is reasonable for one use. The strength of the proposed approach produced unrepeated keys for encryption and each key will be used once. The weakness of the produced key may be enhanced to become more random.
2023-07-21
Wenqi, Huang, Lingyu, Liang, Xin, Wang, Zhengguo, Ren, Shang, Cao, Xiaotao, Jiang.  2022.  An Early Warning Analysis Model of Metering Equipment Based on Federated Hybrid Expert System. 2022 15th International Symposium on Computational Intelligence and Design (ISCID). :217—220.
The smooth operation of metering equipment is inseparable from the monitoring and analysis of equipment alarm events by automated metering systems. With the generation of big data in power metering and the increasing demand for information security of metering systems in the power industry, how to use big data and protect data security at the same time has become a hot research field. In this paper, we propose a hybrid expert model based on federated learning to deal with the problem of alarm information analysis and identification. The hybrid expert system can divide the metering warning problem into multiple sub-problems for processing, which greatly improves the recognition and prediction accuracy. The experimental results show that our model has high accuracy in judging and identifying equipment faults.
2023-05-12
Verma, Kunaal, Girdhar, Mansi, Hafeez, Azeem, Awad, Selim S..  2022.  ECU Identification using Neural Network Classification and Hyperparameter Tuning. 2022 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.
Intrusion detection for Controller Area Network (CAN) protocol requires modern methods in order to compete with other electrical architectures. Fingerprint Intrusion Detection Systems (IDS) provide a promising new approach to solve this problem. By characterizing network traffic from known ECUs, hazardous messages can be discriminated. In this article, a modified version of Fingerprint IDS is employed utilizing both step response and spectral characterization of network traffic via neural network training. With the addition of feature set reduction and hyperparameter tuning, this method accomplishes a 99.4% detection rate of trusted ECU traffic.
ISSN: 2157-4774
2023-03-03
Singh, Anuraj, Garg, Puneet, Singh, Himanshu.  2022.  Effect of Timers on the Keystroke Pattern of the Student in a Computer Based Exam. 2022 IEEE 6th Conference on Information and Communication Technology (CICT). :1–6.
This research studies the effect of a countdown timer and a count-up timer on the keystroke pattern of the student and finds out whether changing the timer type changes the keystroke pattern. It also points out which timer affects more students in a timer environment during exams. We used two hypothesis testing statistical Algorithms, namely, the Two-Sample T-Test and One-way ANOVA Test, for analysis to identify the effect of different times our whether significant differences were found in the keystroke pattern or not when different timers were used. The supporting results have been found with determines that timer change can change the keystroke pattern of the student and from the study of hypothesis testing, different students result from different types of stress when they are under different timer environments.
2023-09-20
Mantoro, Teddy, Fahriza, Muhammad Elky, Agni Catur Bhakti, Muhammad.  2022.  Effective of Obfuscated Android Malware Detection using Static Analysis. 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED). :1—5.
The effective security system improvement from malware attacks on the Android operating system should be updated and improved. Effective malware detection increases the level of data security and high protection for the users. Malicious software or malware typically finds a means to circumvent the security procedure, even when the user is unaware whether the application can act as malware. The effectiveness of obfuscated android malware detection is evaluated by collecting static analysis data from a data set. The experiment assesses the risk level of which malware dataset using the hash value of the malware and records malware behavior. A set of hash SHA256 malware samples has been obtained from an internet dataset and will be analyzed using static analysis to record malware behavior and evaluate which risk level of the malware. According to the results, most of the algorithms provide the same total score because of the multiple crime inside the malware application.
2023-04-14
Selvaganesh, M., Naveen Karthi, P., Nitish Kumar, V. A., Prashanna Moorthy, S. R..  2022.  Efficient Brute-force handling methodology using Indexed-Cluster Architecture of Splunk. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :697–701.
A brute force is a Hacking methodology used to decrypt login passwords, keys and credentials. Hacks that exploit vulnerabilities in packages are rare, whereas Brute Force attacks aim to be the simplest, cheapest, and most straightforward approach to access a website. Using Splunk to analyse massive amounts of data could be very beneficial. The application enables to capture, search, and analyse log information in real-time. By analysing logs as well as many different sources of system information, security events can be uncovered. A log file, which details the events that have occurred in the environment of the application and the server on which they run, is a valuable piece of information. Identifying the attacks against these systems is possible by analysing and correlating this information. Massive amounts of ambiguous and amorphous information can be analysed with its superior resolution. The paper includes instructions on setting up a Splunk server and routing information there from multiple sources. Practical search examples and pre-built add-on applications are provided. Splunk is a powerful tool that allows users to explore big data with greater ease. Seizure can be tracked in near real-time and can be searched through logs. A short amount of time can be spent on analysing big data using map-reduce technology. Briefly, it helps to analyse unstructured log data to better understand how the applications operate. With Splunk, client can detect patterns in the data through a powerful query language. It is easy to set up alerts and warnings based on the queries, which will help alert client about an ongoing (suspected) activity and generate a notification in real-time.
2023-07-21
Giri, Sarwesh, Singh, Gurchetan, Kumar, Babul, Singh, Mehakpreet, Vashisht, Deepanker, Sharma, Sonu, Jain, Prince.  2022.  Emotion Detection with Facial Feature Recognition Using CNN & OpenCV. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :230—232.
Emotion Detection through Facial feature recognition is an active domain of research in the field of human-computer interaction (HCI). Humans are able to share multiple emotions and feelings through their facial gestures and body language. In this project, in order to detect the live emotions from the human facial gesture, we will be using an algorithm that allows the computer to automatically detect the facial recognition of human emotions with the help of Convolution Neural Network (CNN) and OpenCV. Ultimately, Emotion Detection is an integration of obtained information from multiple patterns. If computers will be able to understand more of human emotions, then it will mutually reduce the gap between humans and computers. In this research paper, we will demonstrate an effective way to detect emotions like neutral, happy, sad, surprise, angry, fear, and disgust from the frontal facial expression of the human in front of the live webcam.
2023-04-14
Zuo, Xiaojiang, Wang, Xiao, Han, Rui.  2022.  An Empirical Analysis of CAPTCHA Image Design Choices in Cloud Services. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
Cloud service uses CAPTCHA to protect itself from malicious programs. With the explosive development of AI technology and the emergency of third-party recognition services, the factors that influence CAPTCHA’s security are going to be more complex. In such a situation, evaluating the security of mainstream CAPTCHAs in cloud services is helpful to guide better CAPTCHA design choices for providers. In this paper, we evaluate and analyze the security of 6 mainstream CAPTCHA image designs in public cloud services. According to the evaluation results, we made some suggestions of CAPTCHA image design choices to cloud service providers. In addition, we particularly discussed the CAPTCHA images adopted by Facebook and Twitter. The evaluations are separated into two stages: (i) using AI techniques alone; (ii) using both AI techniques and third-party services. The former is based on open source models; the latter is conducted under our proposed framework: CAPTCHAMix.
2023-09-01
Sayed, Aya Nabil, Hamila, Ridha, Himeur, Yassine, Bensaali, Faycal.  2022.  Employing Information Theoretic Metrics with Data-Driven Occupancy Detection Approaches: A Comparative Analysis. 2022 5th International Conference on Signal Processing and Information Security (ICSPIS). :50—54.
Building occupancy data helps increase energy management systems’ performance, enabling lower energy use while preserving occupant comfort. The focus of this study is employing environmental data (e.g., including but not limited to temperature, humidity, carbon dioxide (CO2), etc.) to infer occupancy information. This will be achieved by exploring the application of information theory metrics with machine learning (ML) approaches to classify occupancy levels for a given dataset. Three datasets and six distinct ML algorithms were used in a comparative study to determine the best strategy for identifying occupancy patterns. It was determined that both k-nearest neighbors (kNN) and random forest (RF) identify occupancy labels with the highest overall level of accuracy, reaching 97.99% and 98.56%, respectively.
2023-06-30
Anju, J., Shreelekshmi, R..  2022.  An Enhanced Copy-deterrence scheme for Secure Image Outsourcing in Cloud. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :97–102.
In this paper, we propose a novel watermarking-based copy deterrence scheme for identifying data leaks through authorized query users in secure image outsourcing systems. The scheme generates watermarks unique to each query user, which are embedded in the retrieved encrypted images. During unauthorized distribution, the watermark embedded in the image is extracted to determine the untrustworthy query user. Experimental results show that the proposed scheme achieves minimal information loss, faster embedding and better resistance to JPEG compression attacks compared with the state-of-the-art schemes.
2023-06-22
Pavan Kumar, R Sai, Chand, K Gopi, Krishna, M Vamsi, Nithin, B Gowtham, Roshini, A, Swetha, K.  2022.  Enhanced DDOS Attack Detection Algorithm to Increase Network Lifetime in Cloud Environment. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1783–1787.
DDoS attacks, one of the oldest forms of cyberthreats, continue to be a favorite tool of mass interruption, presenting cybersecurity hazards to practically every type of company, large and small. As a matter of fact, according to IDC, DDoS attacks are predicted to expand at an 18 percent compound annual growth rate (CAGR) through 2023, indicating that it is past time to enhance investment in strong mitigation systems. And while some firms may assume they are limited targets for a DDoS assault, the amount of structured internet access to power corporation services and apps exposes everyone to downtime and poor performance if the infrastructure is not protected against such attacks. We propose using correlations between missing packets to increase detection accuracy. Furthermore, to ensure that these correlations are calculated correctly.
ISSN: 2575-7288
2023-07-21
Lee, Gwo-Chuan, Li, Zi-Yang, Li, Tsai-Wei.  2022.  Ensemble Algorithm of Convolution Neural Networks for Enhancing Facial Expression Recognition. 2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII ). :111—115.
Artificial intelligence (AI) cooperates with multiple industries to improve the overall industry framework. Especially, human emotion recognition plays an indispensable role in supporting medical care, psychological counseling, crime prevention and detection, and crime investigation. The research on emotion recognition includes emotion-specific intonation patterns, literal expressions of emotions, and facial expressions. Recently, the deep learning model of facial emotion recognition aims to capture tiny changes in facial muscles to provide greater recognition accuracy. Hybrid models in facial expression recognition have been constantly proposed to improve the performance of deep learning models in these years. In this study, we proposed an ensemble learning algorithm for the accuracy of the facial emotion recognition model with three deep learning models: VGG16, InceptionResNetV2, and EfficientNetB0. To enhance the performance of these benchmark models, we applied transfer learning, fine-tuning, and data augmentation to implement the training and validation of the Facial Expression Recognition 2013 (FER-2013) Dataset. The developed algorithm finds the best-predicted value by prioritizing the InceptionResNetV2. The experimental results show that the proposed ensemble learning algorithm of priorities edges up 2.81% accuracy of the model identification. The future extension of this study ventures into the Internet of Things (IoT), medical care, and crime detection and prevention.