Biblio

Found 5756 results

Filters: Keyword is Human Behavior  [Clear All Filters]
2021-06-02
Zegers, Federico M., Hale, Matthew T., Shea, John M., Dixon, Warren E..  2020.  Reputation-Based Event-Triggered Formation Control and Leader Tracking with Resilience to Byzantine Adversaries. 2020 American Control Conference (ACC). :761—766.
A distributed event-triggered controller is developed for formation control and leader tracking (FCLT) with robustness to adversarial Byzantine agents for a class of heterogeneous multi-agent systems (MASs). A reputation-based strategy is developed for each agent to detect Byzantine agent behaviors within their neighbor set and then selectively disregard Byzantine state information. Selectively ignoring Byzantine agents results in time-varying discontinuous changes to the network topology. Nonsmooth dynamics also result from the use of the event-triggered strategy enabling intermittent communication. Nonsmooth Lyapunov methods are used to prove stability and FCLT of the MAS consisting of the remaining cooperative agents.
2021-07-08
Li, Jiawei, Wang, Chuyu, Li, Ang, Han, Dianqi, Zhang, Yan, Zuo, Jinhang, Zhang, Rui, Xie, Lei, Zhang, Yanchao.  2020.  RF-Rhythm: Secure and Usable Two-Factor RFID Authentication. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2194—2203.
Passive RFID technology is widely used in user authentication and access control. We propose RF-Rhythm, a secure and usable two-factor RFID authentication system with strong resilience to lost/stolen/cloned RFID cards. In RF-Rhythm, each legitimate user performs a sequence of taps on his/her RFID card according to a self-chosen secret melody. Such rhythmic taps can induce phase changes in the backscattered signals, which the RFID reader can detect to recover the user's tapping rhythm. In addition to verifying the RFID card's identification information as usual, the backend server compares the extracted tapping rhythm with what it acquires in the user enrollment phase. The user passes authentication checks if and only if both verifications succeed. We also propose a novel phase-hopping protocol in which the RFID reader emits Continuous Wave (CW) with random phases for extracting the user's secret tapping rhythm. Our protocol can prevent a capable adversary from extracting and then replaying a legitimate tapping rhythm from sniffed RFID signals. Comprehensive user experiments confirm the high security and usability of RF-Rhythm with false-positive and false-negative rates close to zero.
2021-05-05
Block, Matthew, Barcaskey, Benjamin, Nimmo, Andrew, Alnaeli, Saleh, Gilbert, Ian, Altahat, Zaid.  2020.  Scalable Cloud-Based Tool to Empirically Detect Vulnerable Code Patterns in Large-Scale System. 2020 IEEE International Conference on Electro Information Technology (EIT). :588—592.
Open-source development is a well-accepted model by software development communities from both academia and industry. Many companies and corporations adopt and use open source systems daily as a core component in their business activities. One of the most important factors that will determine the success of this model is security. The security of software systems is a combination of source code quality, stability, and vulnerabilities. Software vulnerabilities can be introduced by many factors, some of which are the way that programmers write their programs, their background on security standards, and safe programming practices. This paper describes a cloud-based software tool developed by the authors that can help our computing communities in both academia and research to evaluate their software systems on the source code level to help them identify and detect some of the well-known source code vulnerability patterns that can cause security issues if maliciously exploited. The paper also presents an empirical study on the prevalence of vulnerable C/C++ coding patterns inside three large-scale open-source systems comprising more than 42 million lines of source code. The historical data for the studied systems is presented over five years to uncover some historical trends to highlight the changes in the system analyzed over time concerning the presence of some of the source code vulnerabilities patterns. The majority of results show the continued usage of known unsafe functions.
2021-07-08
SAMMOUD, Amal, CHALOUF, Mohamed Aymen, HAMDI, Omessaad, MONTAVONT, Nicolas, Bouallègue, Ammar.  2020.  A secure and lightweight three-factor authentication and key generation scheme for direct communication between healthcare professionals and patient’s WMSN. 2020 IEEE Symposium on Computers and Communications (ISCC). :1—6.
One of the main security issues in telecare medecine information systems is the remote user authentication and key agreement between healthcare professionals and patient's medical sensors. Many of the proposed approaches are based on multiple factors (password, token and possibly biometrics). Two-factor authentication protocols do not resist to many possible attacks. As for three-factor authentication schemes, they usually come with high resource consumption. Since medical sensors have limited storage and computational capabilities, ensuring a minimal resources consumption becomes a major concern in this context. In this paper, we propose a secure and lightweight three-factor authentication and key generation scheme for securing communications between healtcare professional and patient's medical sensors. Thanks to formal verification, we prove that this scheme is robust enough against known possible attacks. A comparison with the most relevant related work's schemes shows that our protocol ensures an optimised resource consumption level.
2021-08-31
Zhang, Liuming, Hajomer, Adnan, Yang, Xuelin, Hu, Weisheng.  2020.  Secure Key Generation and Distribution Using Polarization Dynamics in Fiber. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1—4.
Dynamic properties of optical signals in fiber channel provide a unique, random and reciprocal source for physical-layer secure key generation and distribution (SKGD). In this paper, an inherent physical-layer SKGD scheme is proposed and demonstrated, where the random source is originated from the dynamic fluctuation of the instant state of polarization (SOP) of optical signals in fiber. Due to the channel reciprocity, highly-correlated fluctuation of Stokes parameter of SOP is shared between the legal partners, where an error-free key generation rate (KGR) of 196-bit/s is successfully demonstrated over 25-km standard single-mode fiber (SSMF). In addition, an active polarization scrambler is deployed in fiber to increase the KGR, where an error-free KGR of 200-kbit/s is achieved.
2021-09-08
Raghuprasad, Aswin, Padmanabhan, Suraj, Arjun Babu, M, Binu, P.K.  2020.  Security Analysis and Prevention of Attacks on IoT Devices. 2020 International Conference on Communication and Signal Processing (ICCSP). :0876–0880.
As the demand for smart devices in homes increases, more and more manufacturers have been launching these devices on a mass scale. But what they are missing out on is taking care of the security part of these IoT devices which results in a more vulnerable system. This paper presents an idea through a small-scale working model and the studies that made the same possible. IoT devices face numerous threats these days with the ease of access to powerful hacking tools such as aircrack-ng which provides services like monitoring, attacking and cracking Wifi networks. The essential thought of the proposed system is to give an idea of how some common attacks are carried out, how these attacks work and to device some form of prevention as an additional security layer for IoT devices in general. The system proposed here prevents most forms of attacks that target the victim IoT device using their MAC addresses. These include DoS and DDoS attacks, both of which are the main focus of this paper. This paper also points out some of the future research work that can be followed up.
2021-01-25
More, S., Jamadar, I., Kazi, F..  2020.  Security Visualization and Active Querying for OT Network. :1—6.

Traditionally Industrial Control System(ICS) used air-gap mechanism to protect Operational Technology (OT) networks from cyber-attacks. As internet is evolving and so are business models, customer supplier relationships and their needs are changing. Hence lot of ICS are now connected to internet by providing levels of defense strategies in between OT network and business network to overcome the traditional mechanism of air-gap. This upgrade made OT networks available and accessible through internet. OT networks involve number of physical objects and computer networks. Physical damages to system have become rare but the number of cyber-attacks occurring are evidently increasing. To tackle cyber-attacks, we have a number of measures in place like Firewalls, Intrusion Detection System (IDS) and Intrusion Prevention System (IPS). To ensure no attack on or suspicious behavior within network takes place, we can use visual aids like creating dashboards which are able to flag any such activity and create visual alert about same. This paper describes creation of parser object to convert Common Event Format(CEF) to Comma Separated Values(CSV) format and dashboard to extract maximum amount of data and analyze network behavior. And working of active querying by leveraging packet level data from network to analyze network inclusion in real-time. The mentioned methodology is verified on data collected from Waste Water Treatment Plant and results are presented.,} booktitle = {2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT)

2021-01-28
Zhang, M., Wei, T., Li, Z., Zhou, Z..  2020.  A service-oriented adaptive anonymity algorithm. 2020 39th Chinese Control Conference (CCC). :7626—7631.

Recently, a large amount of research studies aiming at the privacy-preserving data publishing have been conducted. We find that most K-anonymity algorithms fail to consider the characteristics of attribute values distribution in data and the contribution value differences in quasi-identifier attributes when service-oriented. In this paper, the importance of distribution characteristics of attribute values and the differences in contribution value of quasi-identifier attributes to anonymous results are illustrated. In order to maximize the utility of released data, a service-oriented adaptive anonymity algorithm is proposed. We establish a model of reaction dispersion degree to quantify the characteristics of attribute value distribution and introduce the concept of utility weight related to the contribution value of quasi-identifier attributes. The priority coefficient and the characterization coefficient of partition quality are defined to optimize selection strategies of dimension and splitting value in anonymity group partition process adaptively, which can reduce unnecessary information loss so as to further improve the utility of anonymized data. The rationality and validity of the algorithm are verified by theoretical analysis and multiple experiments.

2021-03-09
Wilkens, F., Fischer, M..  2020.  Towards Data-Driven Characterization of Brute-Force Attackers. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

Brute-force login attempts are common for every host on the public Internet. While most of them can be discarded as low-threat attacks, targeted attack campaigns often use a dictionary-based brute-force attack to establish a foothold in the network. Therefore, it is important to characterize the attackers' behavior to prioritize defensive measures and react to new threats quickly. In this paper we present a set of metrics that can support threat hunters in characterizing brute-force login attempts. Based on connection metadata, timing information, and the attacker's dictionary these metrics can help to differentiate scans and to find common behavior across distinct IP addresses. We evaluated our novel metrics on a real-world data set of malicious login attempts collected by our honeypot Honeygrove. We highlight interesting metrics, show how clustering can be leveraged to reveal common behavior across IP addresses, and describe how selected metrics help to assess the threat level of attackers. Amongst others, we for example found strong indicators for collusion between ten otherwise unrelated IP addresses confirming that a clustering of the right metrics can help to reveal coordinated attacks.

2021-03-29
Malek, Z. S., Trivedi, B., Shah, A..  2020.  User behavior Pattern -Signature based Intrusion Detection. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :549—552.

Technology advancement also increases the risk of a computer's security. As we can have various mechanisms to ensure safety but still there have flaws. The main concerned area is user authentication. For authentication, various biometric applications are used but once authentication is done in the begging there was no guarantee that the computer system is used by the authentic user or not. The intrusion detection system (IDS) is a particular procedure that is used to identify intruders by analyzing user behavior in the system after the user logged in. Host-based IDS monitors user behavior in the computer and identify user suspicious behavior as an intrusion or normal behavior. This paper discusses how an expert system detects intrusions using a set of rules as a pattern recognized engine. We propose a PIDE (Pattern Based Intrusion Detection) model, which is verified previously implemented SBID (Statistical Based Intrusion Detection) model. Experiment results indicate that integration of SBID and PBID approach provides an extensive system to detect intrusion.

2021-07-02
Haque, Shaheryar Ehsan I, Saleem, Shahzad.  2020.  Augmented reality based criminal investigation system (ARCRIME). 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1—6.
Crime scene investigation and preservation are fundamentally the pillars of forensics. Numerous cases have been discussed in this paper where mishandling of evidence or improper investigation leads to lengthy trials and even worse incorrect verdicts. Whether the problem is lack of training of first responders or any other scenario, it is essential for police officers to properly preserve the evidence. Second problem is the criminal profiling where each district department has its own method of storing information about criminals. ARCRIME intends to digitally transform the way police combat crime. It will allow police officers to create a copy of the scene of crime so that it can be presented in courts or in forensics labs. It will be in the form of wearable glasses for officers on site whereas officers during training will be wearing a headset. The trainee officers will be provided with simulations of cases which have already been resolved. Officers on scene would be provided with intelligence about the crime and the suspect they are interviewing. They would be able to create a case file with audio recording and images which can be digitally sent to a prosecution lawyer. This paper also explores the risks involved with ARCRIME and also weighs in their impact and likelihood of happening. Certain contingency plans have been highlighted in the same section as well to respond to emergency situations.
2021-09-30
Liu, Jianwei, Zou, Xiang, Han, Jinsong, Lin, Feng, Ren, Kui.  2020.  BioDraw: Reliable Multi-Factor User Authentication with One Single Finger Swipe. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). :1–10.
Multi-factor user authentication (MFUA) becomes increasingly popular due to its superior security comparing with single-factor user authentication. However, existing MFUAs require multiple interactions between users and different authentication components when sensing the multiple factors, leading to extra overhead and bad use experiences. In this paper, we propose a secure and user-friendly MFUA system, namely BioDraw, which utilizes four categories of biometrics (impedance, geometry, composition, and behavior) of human hand plus the pattern-based password to identify and authenticate users. A user only needs to draw a pattern on a RFID tag array, while four biometrics can be simultaneously collected. Particularly, we design a gradient-based pattern recognition algorithm for pattern recognition and then a CNN-LSTM-based classifier for user recognition. Furthermore, to guarantee the systemic security, we propose a novel anti-spoofing scheme, called Binary ALOHA, which utilizes the inhabit randomness of RFID systems. We perform extensive experiments over 21 volunteers. The experiment result demonstrates that BioDraw can achieve a high authentication accuracy (with a false reject rate less than 2%) and is effective in defending against various attacks.
2021-08-17
Zhang, Conghui, Li, Yi, Sun, Wenwen, Guan, Shaopeng.  2020.  Blockchain Based Big Data Security Protection Scheme. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). :574–578.
As the key platform to deal with big data, Hadoop cannot fully protect data security of users by relying on a single Kerberos authentication mechanism. In addition, the single Namenode has disadvantages such as single point failure, performance bottleneck and poor scalability. To solve these problems, a big data security protection scheme is proposed. In this scheme, blockchain technology is adopted to deploy distributed Namenode server cluster to take joint efforts to safeguard the metadata and to allocate access tasks of users. We also improved the heartbeat model to collect user behavior so as to make a faster response to Datanode failure. The smart contract conducts reasonable allocation of user role through the judgment of user tag and risk value. It also establishes a tracking chain of risk value to monitor user behavior in real time. Experiments show that this scheme can better protect data security in Hadoop. It has the advantage of metadata decentralization and the data is hard to be tampered.
2021-01-15
Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S..  2020.  Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :3204—3213.
AI-synthesized face-swapping videos, commonly known as DeepFakes, is an emerging problem threatening the trustworthiness of online information. The need to develop and evaluate DeepFake detection algorithms calls for datasets of DeepFake videos. However, current DeepFake datasets suffer from low visual quality and do not resemble DeepFake videos circulated on the Internet. We present a new large-scale challenging DeepFake video dataset, Celeb-DF, which contains 5,639 high-quality DeepFake videos of celebrities generated using improved synthesis process. We conduct a comprehensive evaluation of DeepFake detection methods and datasets to demonstrate the escalated level of challenges posed by Celeb-DF.
2021-02-22
Nour, B., Khelifi, H., Hussain, R., Moungla, H., Bouk, S. H..  2020.  A Collaborative Multi-Metric Interface Ranking Scheme for Named Data Networks. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2088–2093.
Named Data Networking (NDN) uses the content name to enable content sharing in a network using Interest and Data messages. In essence, NDN supports communication through multiple interfaces, therefore, it is imperative to think of the interface that better meets the communication requirements of the application. The current interface ranking is based on single static metric such as minimum number of hops, maximum satisfaction rate, or minimum network delay. However, this ranking may adversely affect the network performance. To fill the gap, in this paper, we propose a new multi-metric robust interface ranking scheme that combines multiple metrics with different objective functions. Furthermore, we also introduce different forwarding modes to handle the forwarding decision according to the available ranked interfaces. Extensive simulation experiments demonstrate that the proposed scheme selects the best and suitable forwarding interface to deliver content.
2021-02-16
Wang, L., Liu, Y..  2020.  A DDoS Attack Detection Method Based on Information Entropy and Deep Learning in SDN. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:1084—1088.
Software Defined Networking (SDN) decouples the control plane and the data plane and solves the difficulty of new services deployment. However, the threat of a single point of failure is also introduced at the same time. The attacker can launch DDoS attacks towards the controller through switches. In this paper, a DDoS attack detection method based on information entropy and deep learning is proposed. Firstly, suspicious traffic can be inspected through information entropy detection by the controller. Then, fine-grained packet-based detection is executed by the convolutional neural network (CNN) model to distinguish between normal traffic and attack traffic. Finally, the controller performs the defense strategy to intercept the attack. The experiments indicate that the accuracy of this method reaches 98.98%, which has the potential to detect DDoS attack traffic effectively in the SDN environment.
2021-05-13
Song, Jie, Chen, Yixin, Ye, Jingwen, Wang, Xinchao, Shen, Chengchao, Mao, Feng, Song, Mingli.  2020.  DEPARA: Deep Attribution Graph for Deep Knowledge Transferability. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :3921–3929.
Exploring the intrinsic interconnections between the knowledge encoded in PRe-trained Deep Neural Networks (PR-DNNs) of heterogeneous tasks sheds light on their mutual transferability, and consequently enables knowledge transfer from one task to another so as to reduce the training effort of the latter. In this paper, we propose the DEeP Attribution gRAph (DEPARA) to investigate the transferability of knowledge learned from PR-DNNs. In DEPARA, nodes correspond to the inputs and are represented by their vectorized attribution maps with regards to the outputs of the PR-DNN. Edges denote the relatedness between inputs and are measured by the similarity of their features extracted from the PR-DNN. The knowledge transferability of two PR-DNNs is measured by the similarity of their corresponding DEPARAs. We apply DEPARA to two important yet under-studied problems in transfer learning: pre-trained model selection and layer selection. Extensive experiments are conducted to demonstrate the effectiveness and superiority of the proposed method in solving both these problems. Code, data and models reproducing the results in this paper are available at https://github.com/zju-vipa/DEPARA.
Fernandes, Steven, Raj, Sunny, Ewetz, Rickard, Pannu, Jodh Singh, Kumar Jha, Sumit, Ortiz, Eddy, Vintila, Iustina, Salter, Margaret.  2020.  Detecting Deepfake Videos using Attribution-Based Confidence Metric. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :1250–1259.
Recent advances in generative adversarial networks have made detecting fake videos a challenging task. In this paper, we propose the application of the state-of-the-art attribution based confidence (ABC) metric for detecting deepfake videos. The ABC metric does not require access to the training data or training the calibration model on the validation data. The ABC metric can be used to draw inferences even when only the trained model is available. Here, we utilize the ABC metric to characterize whether a video is original or fake. The deep learning model is trained only on original videos. The ABC metric uses the trained model to generate confidence values. For, original videos, the confidence values are greater than 0.94.
2022-10-13
Li, Xue, Zhang, Dongmei, Wu, Bin.  2020.  Detection method of phishing email based on persuasion principle. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:571—574.
“Phishing emails” are phishing emails with illegal links that direct users to pages of some real websites that are spoofed, or pages where real HTML has been inserted with dangerous HTML code, so as to deceive users' private information such as bank or credit card account numbers, email account numbers, and passwords. People are the most vulnerable part of security. Phishing emails use human weaknesses to attack. This article describes the application of the principle of persuasion in phishing emails, and based on the existing methods, this paper proposes a phishing email detection method based on the persuasion principle. The principle of persuasion principle is to count whether the corresponding word of the feature appears in the mail. The feature is selected using an information gain algorithm, and finally 25 features are selected for detection. Finally experimentally verified, accuracy rate reached 99.6%.
2021-10-12
Adibi, Mahya, van der Woude, Jacob.  2020.  Distributed Learning Control for Economic Power Dispatch: A Privacy Preserved Approach*. 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE). :821–826.
We present a privacy-preserving distributed reinforcement learning-based control scheme to address the problem of frequency control and economic dispatch in power generation systems. The proposed control approach requires neither a priori system model knowledge nor the mathematical formulation of the generation cost functions. Due to not requiring the generation cost models, the control scheme is capable of dealing with scenarios in which the cost functions are hard to formulate and/or non-convex. Furthermore, it is privacy-preserving, i.e. none of the units in the network needs to communicate its cost function and/or control policy to its neighbors. To realize this, we propose an actor-critic algorithm with function approximation in which the actor step is performed individually by each unit with no need to infer the policies of others. Moreover, in the critic step each generation unit shares its estimate of the local measurements and the estimate of its cost function with the neighbors, and via performing a consensus algorithm, a consensual estimate is achieved. The performance of our proposed control scheme, in terms of minimizing the overall cost while persistently fulfilling the demand and fast reaction and convergence of our distributed algorithm, is demonstrated on a benchmark case study.
2022-08-12
Andes, Neil, Wei, Mingkui.  2020.  District Ransomware: Static and Dynamic Analysis. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
Ransomware is one of the fastest growing threats to internet security. New Ransomware attacks happen around the globe, on a weekly basis. These attacks happen to individual users and groups, from almost any type of business. Many of these attacks involve Ransomware as a service, where one attacker creates a template Malware, which can be purchased and modified by other attackers to perform specific actions. The District Ransomware was a less well-known strain. This work focuses on statically and dynamically analyzing the District Ransomware and presenting the results.
2021-02-16
Li, R., Wu, B..  2020.  Early detection of DDoS based on φ-entropy in SDN networks. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:731—735.
Software defined network (SDN) is an emerging network architecture. Its control logic and forwarding logic are separated. SDN has the characteristics of centralized management, which makes it easier for malicious attackers to use the security vulnerabilities of SDN networks to implement distributed denial Service (DDoS) attack. Information entropy is a kind of lightweight DDoS early detection method. This paper proposes a DDoS attack detection method in SDN networks based on φ-entropy. φ-entropy can adjust related parameters according to network conditions and enlarge feature differences between normal and abnormal traffic, which can make it easier to detect attacks in the early stages of DDoS traffic formation. Firstly, this article demonstrates the basic properties of φ-entropy, mathematically illustrates the feasibility of φ-entropy in DDoS detection, and then we use Mini-net to conduct simulation experiments to compare the detection effects of DDoS with Shannon entropy.
2022-08-12
Medeiros, Ibéria, Neves, Nuno.  2020.  Impact of Coding Styles on Behaviours of Static Analysis Tools for Web Applications. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :55–56.

Web applications have become an essential resource to access the services of diverse subjects (e.g., financial, healthcare) available on the Internet. Despite the efforts that have been made on its security, namely on the investigation of better techniques to detect vulnerabilities on its source code, the number of vulnerabilities exploited has not decreased. Static analysis tools (SATs) are often used to test the security of applications since their outcomes can help developers in the correction of the bugs they found. The conducted investigation made over SATs stated they often generate errors (false positives (FP) and false negatives (FN)), whose cause is recurrently associated with very diverse coding styles, i.e., similar functionality is implemented in distinct manners, and programming practices that create ambiguity, such as the reuse and share of variables. Based on a common practice of using multiple forms in a same webpage and its processing in a single file, we defined a use case for user login and register with six coding styles scenarios for processing their data, and evaluated the behaviour of three SATs (phpSAFE, RIPS and WAP) with them to verify and understand why SATs produce FP and FN.

2021-02-22
Gündoğan, C., Amsüss, C., Schmidt, T. C., Wählisch, M..  2020.  IoT Content Object Security with OSCORE and NDN: A First Experimental Comparison. 2020 IFIP Networking Conference (Networking). :19–27.
The emerging Internet of Things (IoT) challenges the end-to-end transport of the Internet by low power lossy links and gateways that perform protocol translations. Protocols such as CoAP or MQTT-SN are degraded by the overhead of DTLS sessions, which in common deployment protect content transfer only up to the gateway. To preserve content security end-to-end via gateways and proxies, the IETF recently developed Object Security for Constrained RESTful Environments (OSCORE), which extends CoAP with content object security features commonly known from Information Centric Networks (ICN). This paper presents a comparative analysis of protocol stacks that protect request-response transactions. We measure protocol performances of CoAP over DTLS, OSCORE, and the information-centric Named Data Networking (NDN) protocol on a large-scale IoT testbed in single- and multi-hop scenarios. Our findings indicate that (a) OSCORE improves on CoAP over DTLS in error-prone wireless regimes due to omitting the overhead of maintaining security sessions at endpoints, and (b) NDN attains superior robustness and reliability due to its intrinsic network caches and hop-wise retransmissions.
2021-04-27
Calzavara, S., Focardi, R., Grimm, N., Maffei, M., Tempesta, M..  2020.  Language-Based Web Session Integrity. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :107—122.
Session management is a fundamental component of web applications: despite the apparent simplicity, correctly implementing web sessions is extremely tricky, as witnessed by the large number of existing attacks. This motivated the design of formal methods to rigorously reason about web session security which, however, are not supported at present by suitable automated verification techniques. In this paper we introduce the first security type system that enforces session security on a core model of web applications, focusing in particular on server-side code. We showcase the expressiveness of our type system by analyzing the session management logic of HotCRP, Moodle, and phpMyAdmin, unveiling novel security flaws that have been acknowledged by software developers.