Biblio
There are several security requirements identification methods proposed by researchers in up-front requirements engineering (RE). However, in open source software (OSS) projects, developers use lightweight representation and refine requirements frequently by writing comments. They also tend to discuss security aspect in comments by providing code snippets, attachments, and external resource links. Since most security requirements identification methods in up-front RE are based on textual information retrieval techniques, these methods are not suitable for OSS projects or just-in-time RE. In our study, we propose a new model based on logistic regression to identify security requirements in OSS projects. We used five metrics to build security requirements identification models and tested the performance of these metrics by applying those models to three OSS projects. Our results show that four out of five metrics achieved high performance in intra-project testing.
Increasing interest in cyber-physical systems with integrated computational and physical capabilities that can interact with humans can be identified in research and practice. Since these systems can be classified as safety- and security-critical systems the need for safety and security assurance and certification will grow. Moreover, these systems are typically characterized by fragmentation, interconnectedness, heterogeneity, short release cycles, cross organizational nature and high interference between safety and security requirements. These properties combined with the assurance of compliance to multiple standards, carrying out certification and re-certification, and the lack of an approach to model, document and integrate safety and security requirements represent a major challenge. In order to address this gap we developed a domain agnostic approach to model security and safety requirements in an integrated view to support certification processes during design and run-time phases of cyber-physical systems.
Choosing how to write natural language scenarios is challenging, because stakeholders may over-generalize their descriptions or overlook or be unaware of alternate scenarios. In security, for example, this can result in weak security constraints that are too general, or missing constraints. Another challenge is that analysts are unclear on where to stop generating new scenarios. In this paper, we introduce the Multifactor Quality Method (MQM) to help requirements analysts to empirically collect system constraints in scenarios based on elicited expert preferences. The method combines quantitative statistical analysis to measure system quality with qualitative coding to extract new requirements. The method is bootstrapped with minimal analyst expertise in the domain affected by the quality area, and then guides an analyst toward selecting expert-recommended requirements to monotonically increase system quality. We report the results of applying the method to security. This include 550 requirements elicited from 69 security experts during a bootstrapping stage, and subsequent evaluation of these results in a verification stage with 45 security experts to measure the overall improvement of the new requirements. Security experts in our studies have an average of 10 years of experience. Our results show that using our method, we detect an increase in the security quality ratings collected in the verification stage. Finally, we discuss how our proposed method helps to improve security requirements elicitation, analysis, and measurement.
A self-adaptive system (SAS) can reconfigure to adapt to potentially adverse conditions that can manifest in the environment at run time. However, the SAS may not have been explicitly developed with such conditions in mind, thereby requiring additional configuration states or updates to the requirements specification for the SAS to provide assurance that it continually satisfies its requirements and delivers acceptable behavior. By discovering both adverse environmental conditions and the SAS configuration states that can mitigate those conditions at design time, an SAS can be hardened against uncertainty prior to deployment, effectively extending its lifetime. This paper introduces two search-based techniques, Ragnarok and Valkyrie, for hardening an SAS against uncertainty. Ragnarok automatically discovers adverse conditions that negatively impact an SAS by searching for environmental conditions that explicitly cause requirements violations. Valkyrie then searches for SAS configurations that improve requirements satisficement throughout execution in response to discovered adverse environmental conditions. Together, these techniques can be used to improve the design and implementation of an SAS. We apply each technique to an industry-provided remote data mirroring application that can self-reconfigure in response to unknown or adverse conditions, such as network message delays, network link failures, and sensor noise.
Eddy is a privacy requirements specification language that privacy analysts can use to express requirements over data practices; to collect, use, transfer and retain personal and technical information. The language uses a simple SQL-like syntax to express whether an action is permitted or prohibited, and to restrict those statements to particular data subjects and purposes. Eddy also supports the ability to express modifications on data, including perturbation, data append, and redaction. The Eddy specifications are compiled into Description Logic to automatically detect conflicting requirements and to trace data flows within and across specifications. Conflicts are highlighted, showing which rules are in conflict (expressing prohibitions and rights to perform the same action on equivalent interpretations of the same data, data subjects, or purposes), and what definitions caused the rules to conflict. Each specification can describe an organization's data practices, or the data practices of specific components in a software architecture.
Privacy remains a major challenge today partly because it brings together social and technical considerations. Yet, current software engineering focuses only on the technical aspects. In contrast, our approach, Revani, understands privacy from the standpoint of sociotechnical systems (STSs), with particular attention on the social elements of STSs. We specify STSs via a combination of technical mechanisms and social norms founded on accountability.
Revani provides a way to formally represent mechanisms and norms, and applies model checking to verify whether specified mechanisms and norms would satisfy the requirements of the stakeholders. Additionally, Revani provides a set of design patterns and a revision tool to update an STS specification as necessary. We demonstrate the working of Revani on a healthcare emergency use case pertaining to disasters.
Security decision-making is a critical task in tackling security threats affecting a system or process. It often involves selecting a suitable resolution action to tackle an identified security risk. To support this selection process, decision-makers should be able to evaluate and compare available decision options. This article introduces a modelling language that can be used to represent the effects of resolution actions on the stakeholders' goals, the crime process, and the attacker. In order to reach this aim, we develop a multidisciplinary framework that combines existing knowledge from the fields of software engineering, crime science, risk assessment, and quantitative decision analysis. The framework is illustrated through an application to a case of identity theft.
Despite the abundance of information security guidelines, system developers have difficulties implementing technical solutions that are reasonably secure. Security patterns are one possible solution to help developers reuse security knowledge. The challenge is that it takes experts to develop security patterns. To address this challenge, we need a framework to identify and assess patterns and pattern application practices that are accessible to non-experts. In this paper, we narrowly define what we mean by patterns by focusing on requirements patterns and the considerations that may inform how we identify and validate patterns for knowledge reuse. We motivate this discussion using examples from the requirements pattern literature and theory in cognitive psychology.