Biblio

Filters: Keyword is Internet security  [Clear All Filters]
2023-02-17
Cheng, Benny N..  2022.  Cybersecurity Modelling for SCADA Systems: A Case Study. 2022 Annual Reliability and Maintainability Symposium (RAMS). :1–4.
This paper describes a cybersecurity model for Supervisory Control and Data Acquisition system (SCADA) using techniques similar to those used in reliability systems modelling. Previously, cybersecurity events were considered a part of the reliability events of a cyber physical system [1] [2]. Our approach identifies and treats such events separately as unique class of events by itself. Our analyses shows that the hierarchical model described below has the potential for quantifying the cybersecurity posture of a SCADA system, which goes beyond the usual pass/fail metrics that are currently in use [3]. A range of Mean Time to Security Failure (MTTSF) values as shown in the sensitivity studies below can capture both peacetime and wartime cyber risk assessment of the system. While the Attack and Countermeasure Tree (ACT) constructed below could be taken as somewhat simplistic, more detailed security events can be readily introduced to the ACT tree to reflect a better depiction of a cyberattack. For example, the Common Processing Systems (CPS) systems themselves can be further resolved into constituent components that are vulnerable to cyberattacks. Separate models can also be developed for each of the individual failure events, i.e. confidentiality, integrity, and availability, instead of combining them into one failure event as done below. The methodology for computing the MTTSF metric can be extended to other similar cybersecurity metrics, such as those formulated by the Center for Internet Security (CIS) [3], e.g. mean time to restore to operational status, etc. Additional improvements to the model can be obtained with the incorporation of the repair and restore portion of the semi-Markov chain in Figure 3, which will likely require the use of more advance modeling packages.
ISSN: 2577-0993
2023-03-03
Ayati, Seyed Aref, Naji, Hamid Reza.  2022.  A Secure mechanism to protect UAV communications. 2022 9th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). :1–6.
This paper presents a novel authentication method based on a distributed version of Kerberos for UAVs. One of the major problems of UAVs in recent years has been cyber-attacks which allow attackers to control the UAV or access its information. The growing use of UAVs has encouraged us to investigate the methods of their protection especially authentication of their users. In the past, the Kerberos system was rarely used for authentication in UAV systems. In our proposed method, based on a distributed version of Kerberos, we can authenticate multiple ground stations, users, and controllers for one or more UAVs. This method considers most of the security aspects to protect UAV systems mainly in the authentication phase and improves the security of UAVs and ground control stations and their communications considerably.
ISSN: 2771-1374
2023-06-30
Song, Yuning, Ding, Liping, Liu, Xuehua, Du, Mo.  2022.  Differential Privacy Protection Algorithm Based on Zero Trust Architecture for Industrial Internet. 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS). :917–920.
The Zero Trust Architecture is an important part of the industrial Internet security protection standard. When analyzing industrial data for enterprise-level or industry-level applications, differential privacy (DP) is an important technology for protecting user privacy. However, the centralized and local DP used widely nowadays are only applicable to the networks with fixed trust relationship and cannot cope with the dynamic security boundaries in Zero Trust Architecture. In this paper, we design a differential privacy scheme that can be applied to Zero Trust Architecture. It has a consistent privacy representation and the same noise mechanism in centralized and local DP scenarios, and can balance the strength of privacy protection and the flexibility of privacy mechanisms. We verify the algorithm in the experiment, that using maximum expectation estimation method it is able to obtain equal or even better result of the utility with the same level of security as traditional methods.
2022-04-01
Dabthong, Hachol, Warasart, Maykin, Duma, Phongsaphat, Rakdej, Pongpat, Majaroen, Natt, Lilakiatsakun, Woraphon.  2021.  Low Cost Automated OS Security Audit Platform Using Robot Framework. 2021 Research, Invention, and Innovation Congress: Innovation Electricals and Electronics (RI2C). :31—34.
Security baseline hardening is a baseline configuration framework aims to improve the robustness of the operating system, lowering the risk and impact of breach incidents. In typical best practice, the security baseline hardening requires to have regular check and follow-up to keep the system in-check, this set of activities are called "Security Baseline Audit". The Security Baseline Audit process is responsible by the IT department. In terms of business, this process consumes a fair number of resources such as man-hour, time, and technical knowledge. In a huge production environment, the resources mentioned can be multiplied by the system's amount in the production environment. This research proposes improving the process with automation while maintaining the quality and security level at the standard. Robot Framework, a useful and flexible opensource automation framework, is being utilized in this research following with a very successful result where the configuration is aligned with CIS (Center for Internet Security) run by the automation process. A tremendous amount of time and process are decreased while the configuration is according to this tool's standard.
2022-03-15
Rawal, Bharat S., Gollapudi, Sai Tarun.  2021.  No-Sum IPsec Lite: Simplified and lightweight Internet security protocol for IoT devices. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :4—9.
IPsec is widely used for internet security because it offers confidentiality, integrity, and authenticity also protects from replay attacks. IP Security depends on numerous frameworks, organization propels, and cryptographic techniques. IPsec is a heavyweight complex security protocol suite. Because of complex architecture and implementation processes, security implementers prefer TLS. Because of complex implementation, it is impractical to manage over the IoT devices. We propose a simplified and lite version of internet security protocol implemented with only ESP. For encryption, we use AES, RAS-RLP public key cryptography.
2022-04-01
Song, Yan, Luo, Wenjing, Li, Jian, Xu, Panfeng, Wei, Jianwei.  2021.  SDN-based Industrial Internet Security Gateway. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :238–243.
Industrial Internet is widely used in the production field. As the openness of networks increases, industrial networks facing increasing security risks. Information and communication technologies are now available for most industrial manufacturing. This industry-oriented evolution has driven the emergence of cloud systems, the Internet of Things (IoT), Big Data, and Industry 4.0. However, new technologies are always accompanied by security vulnerabilities, which often expose unpredictable risks. Industrial safety has become one of the most essential and challenging requirements. In this article, we highlight the serious challenges facing Industry 4.0, introduce industrial security issues and present the current awareness of security within the industry. In this paper, we propose solutions for the anomaly detection and defense of the industrial Internet based on the demand characteristics of network security, the main types of intrusions and their vulnerability characteristics. The main work is as follows: This paper first analyzes the basic network security issues, including the network security needs, the security threats and the solutions. Secondly, the security requirements of the industrial Internet are analyzed with the characteristics of industrial sites. Then, the threats and attacks on the network are analyzed, i.e., system-related threats and process-related threats; finally, the current research status is introduced from the perspective of network protection, and the research angle of this paper, i.e., network anomaly detection and network defense, is proposed in conjunction with relevant standards. This paper proposes a software-defined network (SDN)-based industrial Internet security gateway for the security protection of the industrial Internet. Since there are some known types of attacks in the industrial network, in order to fully exploit the effective information, we combine the ExtratreesClassifier to enhance the detection rate of anomaly detection. In order to verify the effectiveness of the algorithm, this paper simulates an industrial network attack, using the acquired training data for testing. The test data are industrial network traffic datasets, and the experimental results show that the algorithm is suitable for anomaly detection in industrial networks.
2022-01-31
Haney, Oliver, ElAarag, Hala.  2021.  Secure Suite: An Open-Source Service for Internet Security. SoutheastCon 2021. :1—7.
Internet security is constantly at risk as a result of the fast developing and highly sophisticated exploitation methods. These attacks use numerous media to take advantage of the most vulnerable of Internet users. Phishing, spam calling, unsecure content and other means of intrusion threaten Internet users every day. In order to maintain the security and privacy of sensitive user data, the user must pay for services that include the storage and generation of secure passwords, monitoring internet traffic to discourage navigation to malicious websites, among other services. Some people do not have the money to purchase privacy protection services and others find convoluted euphemisms baked into privacy policies quite confusing. In response to this problem, we developed an Internet security software package, Secure Suite, which we provide as open source and hence free of charge. Users can easily deploy and manage Secure Suite. It is composed of a password manager, a malicious URL detection service, dubbed MalURLNet, a URL extender, data visualization tools, a browser extension to interact with the web app, and utility tools to maintain data integrity. MalURLNet is one of the main components of Secure Suite. It utilizes deep learning and other open-source software to mitigate security threats by identifying malicious URLs. We exhaustively tested our proposed MalURLNet service. Our studies show that MalURLNet outperforms four other well-known URL classifiers in terms of accuracy, loss, precision, recall, and F1-Score.
2021-12-21
Fajari, Muhammad Fadhillah, Ogi, Dion.  2021.  Implementation of Efficient Anonymous Certificate-Based Multi-Message and Multi-Receiver Signcryption On Raspberry Pi-Based Internet of Things Monitoring System. 2021 International Conference on ICT for Smart Society (ICISS). :1–5.
Internet of things as a technology that connect internet and physical world has been implemented in many diverse fields and has been proven very useful and flexible. In every implementation of technology that involve internet, security must be a great concern, including the implementation of IoT technology. A lot of alternatives can be used to achieve security of IoT. Ming et al. has proposed novel signcryption scheme to secure IoT of monitoring health data. In this work, proposed signcryption scheme from Ming et al. has been successfully implemented using Raspberry Pi and ESP32 and has proven work in securing IoT data.
Xiaojian, Zhang, Liandong, Chen, Jie, Fan, Xiangqun, Wang, Qi, Wang.  2021.  Power IoT Security Protection Architecture Based on Zero Trust Framework. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :166–170.
The construction of the power Internet of Things has led various terminals to access the corporate network on a large scale. The internal and external business interaction and data exchange are more extensive. The current security protection system is based on border isolation protection. This is difficult to meet the needs of the power Internet of Things connection and open shared services. This paper studies the application scheme of the ``zero trust'' typical business scenario of the power Internet of Things with ``Continuous Identity Authentication and Dynamic Access Control'' as the core, and designs the power internet security protection architecture based on zero trust.
2022-04-01
Sedano, Wadlkur Kurniawan, Salman, Muhammad.  2021.  Auditing Linux Operating System with Center for Internet Security (CIS) Standard. 2021 International Conference on Information Technology (ICIT). :466—471.
Linux is one of the operating systems to support the increasingly rapid development of internet technology. Apart from the speed of the process, security also needs to be considered. Center for Internet Security (CIS) Benchmark is an example of a security standard. This study implements the CIS Benchmark using the Chef Inspec application. This research focuses on building a tool to perform security audits on the Ubuntu 20.04 operating system. 232 controls on CIS Benchmark were successfully implemented using Chef Inspec application. The results of this study were 87 controls succeeded, 118 controls failed, and 27 controls were skipped. This research is expected to be a reference for information system managers in managing system security.
2022-09-30
Höglund, Joel, Raza, Shahid.  2021.  LICE: Lightweight certificate enrollment for IoT using application layer security. 2021 IEEE Conference on Communications and Network Security (CNS). :19–28.
To bring Internet-grade security to billions of IoT devices and make them first-class Internet citizens, IoT devices must move away from pre-shared keys to digital certificates. Public Key Infrastructure, PKI, the digital certificate management solution on the Internet, is inevitable to bring certificate-based security to IoT. Recent research efforts has shown the feasibility of PKI for IoT using Internet security protocols. New and proposed standards enable IoT devices to implement more lightweight solutions for application layer security, offering real end-to-end security also in the presence of proxies.In this paper we present LICE, an application layer enrollment protocol for IoT, an important missing piece before certificate-based security can be used with new IoT standards such as OSCORE and EDHOC. Using LICE, enrollment operations can complete by consuming less than 800 bytes of data, less than a third of the corresponding operations using state-of-art EST-coaps over DTLS. To show the feasibility of our solution, we implement and evaluate the protocol on real IoT hardware in a lossy low-power radio network environment.
2022-09-16
Ogundoyin, Sunday Oyinlola, Kamil, Ismaila Adeniyi.  2021.  A Lightweight Authentication and Key Agreement Protocol for Secure Fog-to-Fog Collaboration. 2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom). :348—353.
The fusion of peer-to-peer (P2P) fog network and the traditional three-tier fog computing architecture allows fog devices to conjointly pool their resources together for improved service provisioning and better bandwidth utilization. However, any unauthorized access to the fog network may have calamitous consequences. In this paper, a new lightweight two-party authenticated and key agreement (AKA) protocol is proposed for fog-to-fog collaboration. The security analysis of the protocol reveals that it is resilient to possible attacks. Moreover, the validation of the protocol conducted using the broadly-accepted Automated Verification of internet Security Protocols and Applications (AVISPA) shows that it is safe for practical deployment. The performance evaluation in terms of computation and communication overheads demonstrates its transcendence over the state-of-the-art protocols.
2021-04-27
Hammoud, O. R., Tarkhanov, I. A..  2020.  Blockchain-based open infrastructure for URL filtering in an Internet browser. 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT). :1—4.
This research is dedicated to the development of a prototype of open infrastructure for users’ internet traffic filtering on a browser level. We described the advantages of a distributed approach in comparison with current centralized solutions. Besides, we suggested a solution to define the optimum size for a URL storage block in Ethereum network. This solution may be used for the development of infrastructure of DApps applications on Ethereum network in future. The efficiency of the suggested approach is supported by several experiments.
2021-06-01
Saigopal, Venkata Venugopal Rao Gudlur, Raju, Valliappan.  2020.  IIoT Digital Forensics and Major Security issues. 2020 International Conference on Computational Intelligence (ICCI). :233–236.
the significant area in the growing field of internet security and IIoT connectivity is the way that forensic investigators will conduct investigation process with devices connected to industrial sensors. This part of process is known as IIoT digital forensics and investigation. The main research on IIoT digital forensic investigation has been done, but the current investigation process has revealed and identified major security issues need to be addressed. In parallel, major security issues faced by traditional forensic investigators dealing with IIoT connectivity and data security. This paper address the issues of the challenges and major security issues identified by review conducted in the prospective and emphasizes on the aforementioned security and challenges.
2021-09-07
Zebari, Rizgar R., Zeebaree, Subhi R. M., Sallow, Amira Bibo, Shukur, Hanan M., Ahmad, Omar M., Jacksi, Karwan.  2020.  Distributed Denial of Service Attack Mitigation Using High Availability Proxy and Network Load Balancing. 2020 International Conference on Advanced Science and Engineering (ICOASE). :174–179.
Nowadays, cybersecurity threat is a big challenge to all organizations that present their services over the Internet. Distributed Denial of Service (DDoS) attack is the most effective and used attack and seriously affects the quality of service of each E-organization. Hence, mitigation this type of attack is considered a persistent need. In this paper, we used Network Load Balancing (NLB) and High Availability Proxy (HAProxy) as mitigation techniques. The NLB is used in the Windows platform and HAProxy in the Linux platform. Moreover, Internet Information Service (IIS) 10.0 is implemented on Windows server 2016 and Apache 2 on Linux Ubuntu 16.04 as web servers. We evaluated each load balancer efficiency in mitigating synchronize (SYN) DDoS attack on each platform separately. The evaluation process is accomplished in a real network and average response time and average CPU are utilized as metrics. The results illustrated that the NLB in the Windows platform achieved better performance in mitigation SYN DDOS compared to HAProxy in the Linux platform. Whereas, the average response time of the Window webservers is reduced with NLB. However, the impact of the SYN DDoS on the average CPU usage of the IIS 10.0 webservers was more than those of the Apache 2 webservers.
2022-08-12
Andes, Neil, Wei, Mingkui.  2020.  District Ransomware: Static and Dynamic Analysis. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
Ransomware is one of the fastest growing threats to internet security. New Ransomware attacks happen around the globe, on a weekly basis. These attacks happen to individual users and groups, from almost any type of business. Many of these attacks involve Ransomware as a service, where one attacker creates a template Malware, which can be purchased and modified by other attackers to perform specific actions. The District Ransomware was a less well-known strain. This work focuses on statically and dynamically analyzing the District Ransomware and presenting the results.
2021-10-04
Das, Debashis, Banerjee, Sourav, Mansoor, Wathiq, Biswas, Utpal, Chatterjee, Pushpita, Ghosh, Uttam.  2020.  Design of a Secure Blockchain-Based Smart IoV Architecture. 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS). :1–4.
Blockchain is developing rapidly in various domains for its security. Nowadays, one of the most crucial fundamental concerns is internet security. Blockchain is a novel solution to enhance the security of network applications. However, there are no precise frameworks to secure the Internet of Vehicle (IoV) using Blockchain technology. In this paper, a blockchain-based smart internet of vehicle (BSIoV) framework has been proposed due to the cooperative, collaborative, transparent, and secure characteristics of Blockchain. The main contribution of the proposed work is to connect vehicle-related authorities together to fix a secure and transparent vehicle-to-everything (V2X) communication through the peer-to-peer network connection and provide secure services to the intelligent transport systems. A key management strategy has been included to identify a vehicle in this proposed system. The proposed framework can also provide a significant solution for the data security and safety of the connected vehicles in blockchain network.
2020-06-08
De Guzman, Froilan E., Gerardo, Bobby D., Medina, Ruji P..  2019.  Implementation of Enhanced Secure Hash Algorithm Towards a Secured Web Portal. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). :189–192.
In this paper, the application of the enhanced secure hash algorithm-512 is implemented on web applications specifically in password hashing. In addition to the enhancement of hash function, hill cipher is included for the salt generation to increase the complexity of generating hash tables that may be used as an attack on the algorithm. The testing of same passwords saved on the database is used to create hash collisions that will result to salt generation to produce a new hash message. The matrix encryption key provides five matrices to be selected upon based on the length of concatenated username, password, and concatenated characters from the username. In this process, same password will result to a different hash message that will to make it more secured from future attacks.
2020-06-19
Chandra, Yogesh, Jana, Antoreep.  2019.  Improvement in Phishing Websites Detection Using Meta Classifiers. 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom). :637—641.

In the era of the ever-growing number of smart devices, fraudulent practices through Phishing Websites have become an increasingly severe threat to modern computers and internet security. These websites are designed to steal the personal information from the user and spread over the internet without the knowledge of the user using the system. These websites give a false impression of genuinity to the user by mirroring the real trusted web pages which then leads to the loss of important credentials of the user. So, Detection of such fraudulent websites is an essence and the need of the hour. In this paper, various classifiers have been considered and were found that ensemble classifiers predict to utmost efficiency. The idea behind was whether a combined classifier model performs better than a single classifier model leading to a better efficiency and accuracy. In this paper, for experimentation, three Meta Classifiers, namely, AdaBoostM1, Stacking, and Bagging have been taken into consideration for performance comparison. It is found that Meta Classifier built by combining of simple classifier(s) outperform the simple classifier's performance.

2017-12-04
Costa, V. G. T. da, Barbon, S., Miani, R. S., Rodrigues, J. J. P. C., Zarpelão, B. B..  2017.  Detecting mobile botnets through machine learning and system calls analysis. 2017 IEEE International Conference on Communications (ICC). :1–6.

Botnets have been a serious threat to the Internet security. With the constant sophistication and the resilience of them, a new trend has emerged, shifting botnets from the traditional desktop to the mobile environment. As in the desktop domain, detecting mobile botnets is essential to minimize the threat that they impose. Along the diverse set of strategies applied to detect these botnets, the ones that show the best and most generalized results involve discovering patterns in their anomalous behavior. In the mobile botnet field, one way to detect these patterns is by analyzing the operation parameters of this kind of applications. In this paper, we present an anomaly-based and host-based approach to detect mobile botnets. The proposed approach uses machine learning algorithms to identify anomalous behaviors in statistical features extracted from system calls. Using a self-generated dataset containing 13 families of mobile botnets and legitimate applications, we were able to test the performance of our approach in a close-to-reality scenario. The proposed approach achieved great results, including low false positive rates and high true detection rates.

2017-12-20
Kumar, S. A., Kumar, N. R., Prakash, S., Sangeetha, K..  2017.  Gamification of internet security by next generation CAPTCHAs. 2017 International Conference on Computer Communication and Informatics (ICCCI). :1–5.

CAPTCHA is a type of challenge-response test to ensure that the response is only generated by humans and not by computerized robots. CAPTCHA are getting harder as because usage of latest advanced pattern recognition and machine learning algorithms are capable of solving simpler CAPTCHA. However, some enhancement procedures make the CAPTCHAs too difficult to be recognized by the human. This paper resolves the problem by next generation human-friendly mini game-CAPTCHA for quantifying the usability of CAPTCHAs.

2018-04-11
Meyer, Philipp, Hiesgen, Raphael, Schmidt, Thomas C., Nawrocki, Marcin, Wählisch, Matthias.  2017.  Towards Distributed Threat Intelligence in Real-Time. Proceedings of the SIGCOMM Posters and Demos. :76–78.

In this demo, we address the problem of detecting anomalies on the Internet backbone in near real-time. Many of today's incidents may only become visible from inspecting multiple data sources and by considering multiple vantage points simultaneously. We present a setup based on the distributed forensic platform VAST that was extended to import various data streams from passive measurements and incident reporting at multiple locations, and perform an effective correlation analysis shortly after the data becomes exposed to our queries.

2017-12-27
T, Baby H., R, Sujatha B..  2016.  Chaos based Combined Multiple Recursive KEY Generator for Crypto-Systems. 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT). :411–415.

With the ever increasing growth of internet usage, ensuring high security for information has gained great importance, due to the several threats in the communication channels. Hence there is continuous research towards finding a suitable approach to ensure high security for the information. In recent decades, cryptography is being used extensively for providing security on the Internet although primarily used in the military and diplomatic communities. One such approach is the application of Chaos theory in cryptosystems. In this work, we have proposed the usage of combined multiple recursive generator (CMRG) for KEY generation based on a chaotic function to generate different multiple keys. It is seen that negligible difference in parameters of chaotic function generates completely different keys as well as cipher text. The main motive for developing the chaos based cryptosystem is to attain encryption that provides high security at comparatively higher speed but with lower complexity and cost over the conventional encryption algorithms.

2017-11-03
Gambino, Andrew, Kim, Jinyoung, Sundar, S. Shyam, Ge, Jun, Rosson, Mary Beth.  2016.  User Disbelief in Privacy Paradox: Heuristics That Determine Disclosure. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. :2837–2843.
We conducted a series of in-depth focus groups wherein users provided rationales for their own online privacy behaviors. Our data suggest that individuals often take action with little thought or evaluation, even showing surprise when confronted with their own behaviors. Our analysis yielded a battery of cognitive heuristics, i.e., mental shortcuts / rules of thumb, that users seem to employ when they disclose or withhold information at the spur of the moment. A total of 4 positive heuristics (promoting disclosure) and 4 negative heuristics (inhibiting disclosure) were discovered. An understanding of these heuristics can be valuable for designing interfaces that promote secure and trustworthy computing.
2015-01-09