Biblio

Filters: Keyword is auditing  [Clear All Filters]
2018-11-14
Tajan, L., Kaumanns, M., Westhoff, D..  2018.  Pre-Computing Appropriate Parameters: How to Accelerate Somewhat Homomorphic Encryption for Cloud Auditing. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–6.

In a Semi-autonomic cloud auditing architecture we weaved in privacy enhancing mechanisms [15] by applying the public key version of the Somewhat homomorphic encryption (SHE) scheme from [4]. It turns out that the performance of the SHE can be significantly improved by carefully deriving relevant crypto parameters from the concrete cloud auditing use cases for which the scheme serves as a privacy enhancing approach. We provide a generic algorithm for finding good SHE parameters with respect to a given use case scenario by analyzing and taking into consideration security, correctness and performance of the scheme. Also, to show the relevance of our proposed algorithms we apply it to two predominant cloud auditing use cases.

2019-07-01
Modi, F. M., Desai, M. R., Soni, D. R..  2018.  A Third Party Audit Mechanism for Cloud Based Storage Using File Versioning and Change Tracking Mechanism. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). :521-523.

Cloud storage is an exclusive resource in cloud computing, which helps to store and share the data on cloud storage server. Clients upload the data and its hash information n server together on cloud storage. The file owner always concern about data security like privacy and unauthorized access to third party. The owner also wants to ensure the integrity data during communication process. To ensure integrity, we propose a framework based on third party auditor which checks the integrity and correctness of data during audit process. Our aim is to design custom hash for the file which is not only justifies the integrity but also version information about file.

Shinde, P., Karve, A., Mandaliya, P., Patil, S..  2018.  Wireless Security Audit Penetration Test Using Raspberry Pi. 2018 International Conference on Smart City and Emerging Technology (ICSCET). :1-4.

With the advancement in the wireless technology there are more and more devices connected over WiFi network. Security is one of the major concerns about WiFi other than performance, range, usability, etc. WiFi Auditor is a collection of WiFi testing tools and services packed together inside Raspberry Pi 3 module. The WiFi auditor allows the penetration tester to conduct WiFi attacks and reconnaissance on the selected client or on the complete network. WiFi auditor is portable and stealth hence allowing the attacker to simulate the attacks without anyone noticing them. WiFi auditor provides services such as deliberate jamming, blocking or interference with authorized wireless communications which can be done to the whole network or just a particular node.

2018-11-14
Zhao, W., Qiang, L., Zou, H., Zhang, A., Li, J..  2018.  Privacy-Preserving and Unforgeable Searchable Encrypted Audit Logs for Cloud Storage. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :29–34.

Audit logs are widely used in information systems nowadays. In cloud computing and cloud storage environment, audit logs are required to be encrypted and outsourced on remote servers to protect the confidentiality of data and the privacy of users. The searchable encrypted audit logs support a search on the encrypted audit logs. In this paper, we propose a privacy-preserving and unforgeable searchable encrypted audit log scheme based on PEKS. Only the trusted data owner can generate encrypted audit logs containing access permissions for users. The semi-honest server verifies the audit logs in a searchable encryption way before granting the operation rights to users and storing the audit logs. The data owner can perform a fine-grained conjunctive query on the stored audit logs, and accept only the valid audit logs. The scheme is immune to the collusion tamper or fabrication conducted by server and user. Concrete implementations of the scheme is put forward in detail. The correct of the scheme is proved, and the security properties, such as privacy-preserving, searchability, verifiability and unforgeability are analyzed. Further evaluation of computation load shows that the design is of considerable efficiency.

2020-11-04
Torkura, K. A., Sukmana, M. I. H., Strauss, T., Graupner, H., Cheng, F., Meinel, C..  2018.  CSBAuditor: Proactive Security Risk Analysis for Cloud Storage Broker Systems. 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA). :1—10.

Cloud Storage Brokers (CSB) provide seamless and concurrent access to multiple Cloud Storage Services (CSS) while abstracting cloud complexities from end-users. However, this multi-cloud strategy faces several security challenges including enlarged attack surfaces, malicious insider threats, security complexities due to integration of disparate components and API interoperability issues. Novel security approaches are imperative to tackle these security issues. Therefore, this paper proposes CS-BAuditor, a novel cloud security system that continuously audits CSB resources, to detect malicious activities and unauthorized changes e.g. bucket policy misconfigurations, and remediates these anomalies. The cloud state is maintained via a continuous snapshotting mechanism thereby ensuring fault tolerance. We adopt the principles of chaos engineering by integrating BrokerMonkey, a component that continuously injects failure into our reference CSB system, CloudRAID. Hence, CSBAuditor is continuously tested for efficiency i.e. its ability to detect the changes injected by BrokerMonkey. CSBAuditor employs security metrics for risk analysis by computing severity scores for detected vulnerabilities using the Common Configuration Scoring System, thereby overcoming the limitation of insufficient security metrics in existing cloud auditing schemes. CSBAuditor has been tested using various strategies including chaos engineering failure injection strategies. Our experimental evaluation validates the efficiency of our approach against the aforementioned security issues with a detection and recovery rate of over 96 %.

2018-05-09
Livshitz, I., Lontsikh, P., Eliseev, S..  2017.  The optimization method of the integrated management system security audit. 2017 20th Conference of Open Innovations Association (FRUCT). :248–253.

Nowadays the application of integrated management systems (IMS) attracts the attention of top management from various organizations. However, there is an important problem of running the security audits in IMS and realization of complex checks of different ISO standards in full scale with the essential reducing of available resources.

2018-11-14
Singh, R., Ataussamad, Prakash, S..  2017.  Privacy Preserving in TPA for Secure Cloud by Using Encryption Technique. 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). :1–5.

With all data services of cloud, it's not only stored the data, although shared the data among the multiple users or clients, which make doubt in its integrity due to the existence of software/hardware error along with human error too. There is an existence of several mechanisms to allow data holders and public verifiers to precisely, efficiently and effectively audit integrity of cloud data without accessing the whole data from server. After all, public auditing on the integrity of shared data with pervious extant mechanisms will somehow affirm the confidential information and its identity privacy to the public verifiers. In this paper, to achieve the privacy preserving public for auditing, we intended an explanation for TPA using three way handshaking protocol through the Extensible Authentication Protocol (EAP) with liberated encryption standard. Appropriately, from the cloud, we use the VerifyProof execute by TPA to audit to certify. In addition to this mechanism, the identity of each segment in the shared data is kept private from the public verifiers. Moreover, rather than verifying the auditing task one by one, this will capable to perform, the various auditing tasks simultaneously.

2018-02-06
Wang, Y., Rawal, B., Duan, Q..  2017.  Securing Big Data in the Cloud with Integrated Auditing. 2017 IEEE International Conference on Smart Cloud (SmartCloud). :126–131.

In this paper, we review big data characteristics and security challenges in the cloud and visit different cloud domains and security regulations. We propose using integrated auditing for secure data storage and transaction logs, real-time compliance and security monitoring, regulatory compliance, data environment, identity and access management, infrastructure auditing, availability, privacy, legality, cyber threats, and granular auditing to achieve big data security. We apply a stochastic process model to conduct security analyses in availability and mean time to security failure. Potential future works are also discussed.

2017-12-28
Liang, X., Zhao, J., Shetty, S., Li, D..  2017.  Towards data assurance and resilience in IoT using blockchain. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :261–266.

Data assurance and resilience are crucial security issues in cloud-based IoT applications. With the widespread adoption of drones in IoT scenarios such as warfare, agriculture and delivery, effective solutions to protect data integrity and communications between drones and the control system have been in urgent demand to prevent potential vulnerabilities that may cause heavy losses. To secure drone communication during data collection and transmission, as well as preserve the integrity of collected data, we propose a distributed solution by utilizing blockchain technology along with the traditional cloud server. Instead of registering the drone itself to the blockchain, we anchor the hashed data records collected from drones to the blockchain network and generate a blockchain receipt for each data record stored in the cloud, reducing the burden of moving drones with the limit of battery and process capability while gaining enhanced security guarantee of the data. This paper presents the idea of securing drone data collection and communication in combination with a public blockchain for provisioning data integrity and cloud auditing. The evaluation shows that our system is a reliable and distributed system for drone data assurance and resilience with acceptable overhead and scalability for a large number of drones.

2018-03-26
Wilson, Judson, Wahby, Riad S., Corrigan-Gibbs, Henry, Boneh, Dan, Levis, Philip, Winstein, Keith.  2017.  Trust but Verify: Auditing the Secure Internet of Things. Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services. :464–474.

Internet-of-Things devices often collect and transmit sensitive information like camera footage, health monitoring data, or whether someone is home. These devices protect data in transit with end-to-end encryption, typically using TLS connections between devices and associated cloud services. But these TLS connections also prevent device owners from observing what their own devices are saying about them. Unlike in traditional Internet applications, where the end user controls one end of a connection (e.g., their web browser) and can observe its communication, Internet-of-Things vendors typically control the software in both the device and the cloud. As a result, owners have no way to audit the behavior of their own devices, leaving them little choice but to hope that these devices are transmitting only what they should. This paper presents TLS–Rotate and Release (TLS-RaR), a system that allows device owners (e.g., consumers, security researchers, and consumer watchdogs) to authorize devices, called auditors, to decrypt and verify recent TLS traffic without compromising future traffic. Unlike prior work, TLS-RaR requires no changes to TLS's wire format or cipher suites, and it allows the device's owner to conduct a surprise inspection of recent traffic, without prior notice to the device that its communications will be audited.

2017-05-30
Amir-Mohammadian, Sepehr, Skalka, Christian.  2016.  In-Depth Enforcement of Dynamic Integrity Taint Analysis. Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security. :43–56.

Dynamic taint analysis can be used as a defense against low-integrity data in applications with untrusted user interfaces. An important example is defense against XSS and injection attacks in programs with web interfaces. Data sanitization is commonly used in this context, and can be treated as a precondition for endorsement in a dynamic integrity taint analysis. However, sanitization is often incomplete in practice. We develop a model of dynamic integrity taint analysis for Java that addresses imperfect sanitization with an in-depth approach. To avoid false positives, results of sanitization are endorsed for access control (aka prospective security), but are tracked and logged for auditing and accountability (aka retrospective security). We show how this heterogeneous prospective/retrospective mechanism can be specified as a uniform policy, separate from code. We then use this policy to establish correctness conditions for a program rewriting algorithm that instruments code for the analysis. The rewriting itself is a model of existing, efficient Java taint analysis tools.

2017-02-23
V. S. Gutte, P. Deshpande.  2015.  "Cost and Communication Efficient Auditing over Public Cloud". 2015 International Conference on Computational Intelligence and Communication Networks (CICN). :807-810.

Cloud Computing is one of the large and essential environment now a days to work for the storage collection and privacy preserve to that data. Cloud data security is most important and major concern for the client while use of the cloud services provided by the different service providers. There can be some major security concern and conflicts between the client and the service provider. To get out from those issues, a third party auditor uses as an auditor for assurance of data in the environment. Storage systems for the cloud has many fundamental challenges still today. All basic as well critical challenges among which storage space and security is generally the top concern in the cloud environment. To give the appropriate security issues we have proposed third party authentication system. The cloud not only for the simplified data storage but also secure data acquisition in cloud environment. At last we have perform different security analysis as well performance analysis. It give the results that proposed scheme has significant increases in efficiency for maintaining highly secure data storage and acquisition. The proposed method also helps to minimize the cost in environment and also increases communication efficiency in the cloud environment.

2015-01-13
John Slankas, Maria Riaz, Jason King, Laurie Williams.  2014.  Discovering Security Requirements from Natural Language. 36th International Conference on Software Engineering.

Project documentation often contains security-relevant statements that are indicative of the security requirements of a system. However these statements may not be explicitly specified or straightforward to locate. At best, requirements analysts manually extract applicable security requirements from project documents. However, security requirements that are not explicitly stated may not be considered during implementation. The goal of this research is to aid requirements analysts in generating security requirements through identifying securityrelevant statements in project documentation and providing context-specific templates to generate security requirements. First, we identify the most prevalent security objectives from software security literature. To identify security-relevant statements in project documentation, we propose a tool-based process to classify statements as related to zero or more security objectives. We then develop a set of context-specific templates to help translate the security objectives of each statement into explicit sets of security functional requirements. We evaluate our process on six documents from the electronic healthcare software industry, identifying 46% of statements as implicitly or explicitly related to security. Our classification approach identified security objectives with a precision of .82 and recall of .79. From our total set of classified statements, we extracted 16 context-specific templates that identify 41 reusable security requirements.