Biblio

Filters: Author is Li, J.  [Clear All Filters]
2021-04-08
Shi, S., Li, J., Wu, H., Ren, Y., Zhi, J..  2020.  EFM: An Edge-Computing-Oriented Forwarding Mechanism for Information-Centric Networks. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :154–159.
Information-Centric Networking (ICN) has attracted much attention as a promising future network design, which presents a paradigm shift from host-centric to content-centric. However, in edge computing scenarios, there is still no specific ICN forwarding mechanism to improve transmission performance. In this paper, we propose an edge-oriented forwarding mechanism (EFM) for edge computing scenarios. The rationale is to enable edge nodes smarter, such as acting as agents for both consumers and providers to improve content retrieval and distribution. On the one hand, EFM can assist consumers: the edge router can be used either as a fast content repository to satisfy consumers’ requests or as a smart delegate of consumers to request content from upstream nodes. On the other hand, EFM can assist providers: EFM leverages the optimized in-network recovery/retransmission to detect packet loss or even accelerate the content distribution. The goal of our research is to improve the performance of edge networks. Simulation results based on ndnSIM indicate that EFM can enable efficient content retrieval and distribution, friendly to both consumers and providers.
2021-03-29
Li, J., Wang, X., Liu, S..  2020.  Hash Retrieval Method for Recaptured Images Based on Convolutional Neural Network. 2020 2nd World Symposium on Artificial Intelligence (WSAI). :79–83.
For the purpose of outdoor advertising market researching, AD images are recaptured and uploaded everyday for statistics. But the quality of the recaptured advertising images are often affected by conditions such as angle, distance, and light during the shooting process, which consequently reduce either the speed or the accuracy of the retrieving algorithm. In this paper, we proposed a hash retrieval method based on convolutional neural networks for recaptured images. The basic idea is to add a hash layer to the convolutional neural network and then extract the binary hash code output by the hash layer to perform image retrieval in lowdimensional Hamming space. Experimental results show that the retrieval performance is improved compared with the current commonly used hash retrieval methods.
Liao, S., Wu, J., Li, J., Bashir, A. K..  2020.  Proof-of-Balance: Game-Theoretic Consensus for Controller Load Balancing of SDN. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :231–236.
Software Defined Networking (SDN) focus on the isolation of control plane and data plane, greatly enhancing the network's support for heterogeneity and flexibility. However, although the programmable network greatly improves the performance of all aspects of the network, flexible load balancing across controllers still challenges the current SDN architecture. Complex application scenarios lead to flexible and changeable communication requirements, making it difficult to guarantee the Quality of Service (QoS) for SDN users. To address this issue, this paper proposes a paradigm that uses blockchain to incentive safe load balancing for multiple controllers. We proposed a controller consortium blockchain for secure and efficient load balancing of multi-controllers, which includes a new cryptographic currency balance coin and a novel consensus mechanism Proof-of-Balance (PoB). In addition, we have designed a novel game theory-based incentive mechanism to incentive controllers with tight communication resources to offload tasks to idle controllers. The security analysis and performance simulation results indicate the superiority and effectiveness of the proposed scheme.
2021-02-03
Gao, L., Sun, J., Li, J..  2020.  Security of Networked Control Systems with Incomplete Information Based on Game Theory. 2020 39th Chinese Control Conference (CCC). :6701—6706.

The security problem of networked control systems (NCSs) suffering denial of service(DoS) attacks with incomplete information is investigated in this paper. Data transmission among different components in NCSs may be blocked due to DoS attacks. We use the concept of security level to describe the degree of security of different components in an NCS. Intrusion detection system (IDS) is used to monitor the invalid data generated by DoS attacks. At each time slot, the defender considers which component to monitor while the attacker considers which place for invasion. A one-shot game between attacker and defender is built and both the complete information case and the incomplete information case are considered. Furthermore, a repeated game model with updating beliefs is also established based on the Bayes' rule. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.

2021-01-28
Wang, N., Song, H., Luo, T., Sun, J., Li, J..  2020.  Enhanced p-Sensitive k-Anonymity Models for Achieving Better Privacy. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :148—153.

To our best knowledge, the p-sensitive k-anonymity model is a sophisticated model to resist linking attacks and homogeneous attacks in data publishing. However, if the distribution of sensitive values is skew, the model is difficult to defend against skew attacks and even faces sensitive attacks. In practice, the privacy requirements of different sensitive values are not always identical. The “one size fits all” unified privacy protection level may cause unnecessary information loss. To address these problems, the paper quantifies privacy requirements with the concept of IDF and concerns more about sensitive groups. Two enhanced anonymous models with personalized protection characteristic, that is, (p,αisg) -sensitive k-anonymity model and (pi,αisg)-sensitive k-anonymity model, are then proposed to resist skew attacks and sensitive attacks. Furthermore, two clustering algorithms with global search and local search are designed to implement our models. Experimental results show that the two enhanced models have outstanding advantages in better privacy at the expense of a little data utility.

2020-12-11
Li, J., Liu, H., Wu, J., Zhu, J., Huifeng, Y., Rui, X..  2019.  Research on Nonlinear Frequency Hopping Communication Under Big Data. 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). :349—354.

Aiming at the problems of poor stability and low accuracy of current communication data informatization processing methods, this paper proposes a research on nonlinear frequency hopping communication data informatization under the framework of big data security evaluation. By adding a frequency hopping mediation module to the frequency hopping communication safety evaluation framework, the communication interference information is discretely processed, and the data parameters of the nonlinear frequency hopping communication data are corrected and converted by combining a fast clustering analysis algorithm, so that the informatization processing of the nonlinear frequency hopping communication data under the big data safety evaluation framework is completed. Finally, experiments prove that the research on data informatization of nonlinear frequency hopping communication under the framework of big data security evaluation could effectively improve the accuracy and stability.

Liu, F., Li, J., Wang, Y., Li, L..  2019.  Kubestorage: A Cloud Native Storage Engine for Massive Small Files. 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC). :1—4.
Cloud Native, the emerging computing infrastructure has become a new trend for cloud computing, especially after the development of containerization technology such as docker and LXD, and the orchestration system for them like Kubernetes and Swarm. With the growing popularity of Cloud Native, the following problems have been raised: (i) most Cloud Native applications were designed for making full use of the cloud platform, but their file storage has not been completely optimized for adapting it. (ii) the traditional file system is designed as a utility for storing and retrieving files, usually built into the kernel of the operating systems. But when placing it to a large-scale condition, like a network storage server shared by thousands of computing instances, and stores millions of files, it will be slow and even unstable. (iii) most storage solutions use metadata for faster tracking of files, but the metadata itself will take up a lot of space, and the capacity of it is usually limited. If the file system store metadata directly into hard disk without caching, the tracking of massive small files will be a lot slower. (iv) The traditional object storage solution can't provide enough features to make itself more practical on the cloud such as caching and auto replication. This paper proposes a new storage engine based on the well-known Haystack storage engine, optimized in terms of service discovery and Automated fault tolerance, make it more suitable for Cloud Native infrastructure, deployment and applications. We use the object storage model to solve the large and high-frequency file storage needs, offering a simple and unified set of APIs for application to access. We also take advantage of Kubernetes' sophisticated and automated toolchains to make cloud storage easier to deploy, more flexible to scale, and more stable to run.
2019-09-23
Chen, W., Liang, X., Li, J., Qin, H., Mu, Y., Wang, J..  2018.  Blockchain Based Provenance Sharing of Scientific Workflows. 2018 IEEE International Conference on Big Data (Big Data). :3814–3820.
In a research community, the provenance sharing of scientific workflows can enhance distributed research cooperation, experiment reproducibility verification and experiment repeatedly doing. Considering that scientists in such a community are often in a loose relation and distributed geographically, traditional centralized provenance sharing architectures have shown their disadvantages in poor trustworthiness, reliabilities and efficiency. Additionally, they are also difficult to protect the rights and interests of data providers. All these have been largely hindering the willings of distributed scientists to share their workflow provenance. Considering the big advantages of blockchain in decentralization, trustworthiness and high reliability, an approach to sharing scientific workflow provenance based on blockchain in a research community is proposed. To make the approach more practical, provenance is handled on-chain and original data is delivered off-chain. A kind of block structure to support efficient provenance storing and retrieving is designed, and an algorithm for scientists to search workflow segments from provenance as well as an algorithm for experiments backtracking are provided to enhance the experiment result sharing, save computing resource and time cost by avoiding repeated experiments as far as possible. Analyses show that the approach is efficient and effective.
2020-11-23
Gao, Y., Li, X., Li, J., Gao, Y., Guo, N..  2018.  Graph Mining-based Trust Evaluation Mechanism with Multidimensional Features for Large-scale Heterogeneous Threat Intelligence. 2018 IEEE International Conference on Big Data (Big Data). :1272–1277.
More and more organizations and individuals start to pay attention to real-time threat intelligence to protect themselves from the complicated, organized, persistent and weaponized cyber attacks. However, most users worry about the trustworthiness of threat intelligence provided by TISPs (Threat Intelligence Sharing Platforms). The trust evaluation mechanism has become a hot topic in applications of TISPs. However, most current TISPs do not present any practical solution for trust evaluation of threat intelligence itself. In this paper, we propose a graph mining-based trust evaluation mechanism with multidimensional features for large-scale heterogeneous threat intelligence. This mechanism provides a feasible scheme and achieves the task of trust evaluation for TISP, through the integration of a trust-aware intelligence architecture model, a graph mining-based intelligence feature extraction method, and an automatic and interpretable trust evaluation algorithm. We implement this trust evaluation mechanism in a practical TISP (called GTTI), and evaluate the performance of our system on a real-world dataset from three popular cyber threat intelligence sharing platforms. Experimental results show that our mechanism can achieve 92.83% precision and 93.84% recall in trust evaluation. To the best of our knowledge, this work is the first to evaluate the trust level of heterogeneous threat intelligence automatically from the perspective of graph mining with multidimensional features including source, content, time, and feedback. Our work is beneficial to provide assistance on intelligence quality for the decision-making of human analysts, build a trust-aware threat intelligence sharing platform, and enhance the availability of heterogeneous threat intelligence to protect organizations against cyberspace attacks effectively.
2018-11-14
Zhao, W., Qiang, L., Zou, H., Zhang, A., Li, J..  2018.  Privacy-Preserving and Unforgeable Searchable Encrypted Audit Logs for Cloud Storage. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :29–34.

Audit logs are widely used in information systems nowadays. In cloud computing and cloud storage environment, audit logs are required to be encrypted and outsourced on remote servers to protect the confidentiality of data and the privacy of users. The searchable encrypted audit logs support a search on the encrypted audit logs. In this paper, we propose a privacy-preserving and unforgeable searchable encrypted audit log scheme based on PEKS. Only the trusted data owner can generate encrypted audit logs containing access permissions for users. The semi-honest server verifies the audit logs in a searchable encryption way before granting the operation rights to users and storing the audit logs. The data owner can perform a fine-grained conjunctive query on the stored audit logs, and accept only the valid audit logs. The scheme is immune to the collusion tamper or fabrication conducted by server and user. Concrete implementations of the scheme is put forward in detail. The correct of the scheme is proved, and the security properties, such as privacy-preserving, searchability, verifiability and unforgeability are analyzed. Further evaluation of computation load shows that the design is of considerable efficiency.

2020-11-23
Wang, X., Li, J..  2018.  Design of Intelligent Home Security Monitoring System Based on Android. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :2621–2624.
In view of the problem that the health status and safety monitoring of the traditional intelligent home are mainly dependent on the manual inspection, this paper introduces the intelligent home-based remote monitoring system by introducing the Internet-based Internet of Things technology into the intelligent home condition monitoring and safety assessment. The system's Android remote operation based on the MVP model to develop applications, the use of neural networks to deal with users daily use of operational data to establish the network data model, combined with S3C2440A microcontrollers in the gateway to the embedded Linux to facilitate different intelligent home drivers development. Finally, the power line communication network is used to connect the intelligent electrical appliances to the gateway. By calculating the success rate of the routing nodes, the success rate of the network nodes of 15 intelligent devices is 98.33%. The system can intelligent home many electrical appliances at the same time monitoring, to solve the system data and network congestion caused by the problem can not he security monitoring.
2020-11-17
Wang, H., Li, J., Liu, D..  2018.  Research on Operating Data Analysis for Enterprise Intranet Information Security Risk Assessment. 2018 12th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID). :72—76.
Operating data analysis means to analyze the operating system logs, user operation logs, various types of alarms and security relevant configurations, etc. The purpose is to find whether there is an attack event, suspicious behaviors or improper configurations. It is an important part of risk assessment for enterprise intranet. However, due to the lack of information security knowledge or relevant experience, many people do not know how to properly implement it. In this article, we provided guidance on conducting operating data analysis and how to determine the security risk with the analysis results.
2018-05-30
Wen, M., Zhang, X., Li, H., Li, J..  2017.  A Data Aggregation Scheme with Fine-Grained Access Control for the Smart Grid. 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). :1–5.

With the rapid development of smart grid, smart meters are deployed at energy consumers' premises to collect real-time usage data. Although such a communication model can help the control center of the energy producer to improve the efficiency and reliability of electricity delivery, it also leads to some security issues. For example, this real-time data involves the customers' privacy. Attackers may violate the privacy for house breaking, or they may tamper with the transmitted data for their own benefits. For this purpose, many data aggregation schemes are proposed for privacy preservation. However, rare of them cares about both the data aggregation and fine-grained access control to improve the data utility. In this paper, we proposes a data aggregation scheme based on attribute decision tree. Security analysis illustrates that our scheme can achieve the data integrity, data privacy preservation and fine- grained data access control. Experiment results show that our scheme are more efficient than existing schemes.

2018-04-02
Gao, Y., Luo, T., Li, J., Wang, C..  2017.  Research on K Anonymity Algorithm Based on Association Analysis of Data Utility. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :426–432.

More and more medical data are shared, which leads to disclosure of personal privacy information. Therefore, the construction of medical data privacy preserving publishing model is of great value: not only to make a non-correspondence between the released information and personal identity, but also to maintain the data utility after anonymity. However, there is an inherent contradiction between the anonymity and the data utility. In this paper, a Principal Component Analysis-Grey Relational Analysis (PCA-GRA) K anonymous algorithm is proposed to improve the data utility effectively under the premise of anonymity, in which the association between quasi-identifiers and the sensitive information is reckoned as a criterion to control the generalization hierarchy. Compared with the previous anonymity algorithms, results show that the proposed PCA-GRA K anonymous algorithm has achieved significant improvement in data utility from three aspects, namely information loss, feature maintenance and classification evaluation performance.

2018-04-04
Liu, Z., Deng, X., Li, J..  2017.  A secure localization algorithm based on reputation against wormhole attack in UWSNS. 2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). :695–700.

On account of large and inconsistent propagation delays during transmission in Underwater Wireless Sensor Networks (UWSNs), wormholes bring more destructive than many attacks to localization applications. As a localization algorithm, DV-hop is classic but without secure scheme. A secure localization algorithm for UWSNs- RDV-HOP is brought out, which is based on reputation values and the constraints of propagation distance in UWSNs. In RDV-HOP, the anchor nodes evaluate the reputation of paths to other anchor nodes and broadcast these reputation values to the network. Unknown nodes select credible anchors nodes with high reputation to locate. We analyze the influence of the location accuracy with some parameters in the simulation experiments. The results show that the proposed algorithm can reduce the location error under the wormhole attack.

2018-02-15
Wang, M., Qu, Z., He, X., Li, T., Jin, X., Gao, Z., Zhou, Z., Jiang, F., Li, J..  2017.  Real time fault monitoring and diagnosis method for power grid monitoring and its application. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). :1–6.

In Energy Internet mode, a large number of alarm information is generated when equipment exception and multiple faults in large power grid, which seriously affects the information collection, fault analysis and delays the accident treatment for the monitors. To this point, this paper proposed a method for power grid monitoring to monitor and diagnose fault in real time, constructed the equipment fault logical model based on five section alarm information, built the standard fault information set, realized fault information optimization, fault equipment location, fault type diagnosis, false-report message and missing-report message analysis using matching algorithm. The validity and practicality of the proposed method by an actual case was verified, which can shorten the time of obtaining and analyzing fault information, accelerate the progress of accident treatment, ensure the safe and stable operation of power grid.

2018-02-02
Whelihan, D., Vai, M., Evanich, N., Kwak, K. J., Li, J., Britton, M., Frantz, B., Hadcock, D., Lynch, M., Schafer, D. et al..  2017.  Designing agility and resilience into embedded systems. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :249–254.

Cyber-Physical Systems (CPS) such as Unmanned Aerial Systems (UAS) sense and actuate their environment in pursuit of a mission. The attack surface of these remotely located, sensing and communicating devices is both large, and exposed to adversarial actors, making mission assurance a challenging problem. While best-practice security policies should be followed, they are rarely enough to guarantee mission success as not all components in the system may be trusted and the properties of the environment (e.g., the RF environment) may be under the control of the attacker. CPS must thus be built with a high degree of resilience to mitigate threats that security cannot alleviate. In this paper, we describe the Agile and Resilient Embedded Systems (ARES) methodology and metric set. The ARES methodology pursues cyber security and resilience (CSR) as high level system properties to be developed in the context of the mission. An analytic process guides system developers in defining mission objectives, examining principal issues, applying CSR technologies, and understanding their interactions.

2018-10-26
Li, J., Hua, C..  2017.  RaptorQ code based concurrent transmissions in dual connectivity LTE network. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.

Dual Connectivity(DC) is one of the key technologies standardized in Release 12 of the 3GPP specifications for the Long Term Evolution (LTE) network. It attempts to increase the per-user throughput by allowing the user equipment (UE) to maintain connections with the MeNB (master eNB) and SeNB (secondary eNB) simultaneously, which are inter-connected via non-ideal backhaul. In this paper, we focus on one of the use cases of DC whereby the downlink U-plane data is split at the MeNB and transmitted to the UE via the associated MeNB and SeNB concurrently. In this case, out-of-order packet delivery problem may occur at the UE due to the delay over the non-ideal backhaul link, as well as the dynamics of channel conditions over the MeNB-UE and SeNB-UE links, which will introduce extra delay for re-ordering the packets. As a solution, we propose to adopt the RaptorQ FEC code to encode the source data at the MeNB, and then the encoded symbols are separately transmitted through the MeNB and SeNB. The out-of-order problem can be effectively eliminated since the UE can decode the original data as long as it receives enough encoded symbols from either the MeNB or SeNB. We present detailed protocol design for the RaptorQ code based concurrent transmission scheme, and simulation results are provided to illustrate the performance of the proposed scheme.

2017-12-27
Guo, L., Chen, J., Li, J..  2016.  Chaos-Based color image encryption and compression scheme using DNA complementary rule and Chinese remainder theorem. 2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :208–212.

In this paper, we propose a new color image encryption and compression algorithm based on the DNA complementary rule and the Chinese remainder theorem, which combines the DNA complementary rule with quantum chaotic map. We use quantum chaotic map and DNA complementary rule to shuffle the color image and obtain the shuffled image, then Chinese remainder theorem from number theory is utilized to diffuse and compress the shuffled image simultaneously. The security analysis and experiment results show that the proposed encryption algorithm has large key space and good encryption result, it also can resist against common attacks.