Biblio

Found 935 results

Filters: Keyword is Servers  [Clear All Filters]
2018-01-16
Nikolskaya, K. Y., Ivanov, S. A., Golodov, V. A., Sinkov, A. S..  2017.  Development of a mathematical model of the control beginning of DDoS-attacks and malicious traffic. 2017 International Conference "Quality Management,Transport and Information Security, Information Technologies" (IT QM IS). :84–86.

A technique and algorithms for early detection of the started attack and subsequent blocking of malicious traffic are proposed. The primary separation of mixed traffic into trustworthy and malicious traffic was carried out using cluster analysis. Classification of newly arrived requests was done using different classifiers with the help of received training samples and developed success criteria.

2018-04-02
Hong, J. B., Kim, D. S..  2017.  Discovering and Mitigating New Attack Paths Using Graphical Security Models. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :45–52.

To provide a comprehensive security analysis of modern networked systems, we need to take into account the combined effects of existing vulnerabilities and zero-day vulnerabilities. In addition to them, it is important to incorporate new vulnerabilities emerging from threats such as BYOD, USB file sharing. Consequently, there may be new dependencies between system components that could also create new attack paths, but previous work did not take into account those new attack paths in their security analysis (i.e., not all attack paths are taken into account). Thus, countermeasures may not be effective, especially against attacks exploiting the new attack paths. In this paper, we propose a Unified Vulnerability Risk Analysis Module (UV-RAM) to address the aforementioned problems by taking into account the combined effects of those vulnerabilities and capturing the new attack paths. The three main functionalities of UV-RAM are: (i) to discover new dependencies and new attack paths, (ii) to incorporate new vulnerabilities introduced and zero-day vulnerabilities into security analysis, and (iii) to formulate mitigation strategies for hardening the networked system. Our experimental results demonstrate and validate the effectiveness of UV-RAM.

2018-01-16
Bhosale, K. S., Nenova, M., Iliev, G..  2017.  The distributed denial of service attacks (DDoS) prevention mechanisms on application layer. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS). :136–139.

As DDOS attacks interrupt internet services, DDOS tools confirm the effectiveness of the current attack. DDOS attack and countermeasures continue to increase in number and complexity. In this paper, we explore the scope of the DDoS flooding attack problem and attempts to combat it. A contemporary escalation of application layer distributed denial of service attacks on the web services has quickly transferred the focus of the research community from conventional network based denial of service. As a result, new genres of attacks were explored like HTTP GET Flood, HTTP POST Flood, Slowloris, R-U-Dead-Yet (RUDY), DNS etc. Also after a brief introduction to DDOS attacks, we discuss the characteristics of newly proposed application layer distributed denial of service attacks and embellish their impact on modern web services.

2018-06-11
Wang, M., Zhang, Z., Xu, H..  2017.  DNS configurations and its security analyzing via resource records of the top-level domains. 2017 11th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID). :21–25.

Top-level domains play an important role in domain name system. Close attention should be paid to security of top level domains. In this paper, we found many configuration anomalies of top-level domains by analyzing their resource records. We got resource records of top-level domains from root name servers and authoritative servers of top-level domains. By comparing these resource records, we observed the anomalies in top-level domains. For example, there are 8 servers shared by more than one hundred top-level domains; Some TTL fields or SERIAL fields of resource records obtained on each NS servers of the same top-level domain were inconsistent; some authoritative servers of top-level domains were unreachable. Those anomalies may affect the availability of top-level domains. We hope that these anomalies can draw top-level domain administrators' attention to security of top-level domains.

2018-02-14
Guo, C., Chen, X., Jie, Y., Zhangjie, F., Li, M., Feng, B..  2017.  Dynamic Multi-phrase Ranked Search over Encrypted Data with Symmetric Searchable Encryption. IEEE Transactions on Services Computing. PP:1–1.

As cloud computing becomes prevalent, more and more data owners are likely to outsource their data to a cloud server. However, to ensure privacy, the data should be encrypted before outsourcing. Symmetric searchable encryption allows users to retrieve keyword over encrypted data without decrypting the data. Many existing schemes that are based on symmetric searchable encryption only support single keyword search, conjunctive keywords search, multiple keywords search, or single phrase search. However, some schemes, i.e., static schemes, only search one phrase in a query request. In this paper, we propose a multi-phrase ranked search over encrypted cloud data, which also supports dynamic update operations, such as adding or deleting files. We used an inverted index to record the locations of keywords and to judge whether the phrase appears. This index can search for keywords efficiently. In order to rank the results and protect the privacy of relevance score, the relevance score evaluation model is used in searching process on client-side. Also, the special construction of the index makes the scheme dynamic. The data owner can update the cloud data at very little cost. Security analyses and extensive experiments were conducted to demonstrate the safety and efficiency of the proposed scheme.

2018-04-11
Abaid, Z., Kaafar, M. A., Jha, S..  2017.  Early Detection of In-the-Wild Botnet Attacks by Exploiting Network Communication Uniformity: An Empirical Study. 2017 IFIP Networking Conference (IFIP Networking) and Workshops. :1–9.

Distributed attacks originating from botnet-infected machines (bots) such as large-scale malware propagation campaigns orchestrated via spam emails can quickly affect other network infrastructures. As these attacks are made successful only by the fact that hundreds of infected machines engage in them collectively, their damage can be avoided if machines infected with a common botnet can be detected early rather than after an attack is launched. Prior studies have suggested that outgoing bot attacks are often preceded by other ``tell-tale'' malicious behaviour, such as communication with botnet controllers (C&C servers) that command botnets to carry out attacks. We postulate that observing similar behaviour occuring in a synchronised manner across multiple machines is an early indicator of a widespread infection of a single botnet, leading potentially to a large-scale, distributed attack. Intuitively, if we can detect such synchronised behaviour early enough on a few machines in the network, we can quickly contain the threat before an attack does any serious damage. In this work we present a measurement-driven analysis to validate this intuition. We empirically analyse the various stages of malicious behaviour that are observed in real botnet traffic, and carry out the first systematic study of the network behaviour that typically precedes outgoing bot attacks and is synchronised across multiple infected machines. We then implement as a proof-of-concept a set of analysers that monitor synchronisation in botnet communication to generate early infection and attack alerts. We show that with this approach, we can quickly detect nearly 80% of real-world spamming and port scanning attacks, and even demonstrate a novel capability of preventing these attacks altogether by predicting them before they are launched.

2018-05-30
Tavasoli, M., Alishahi, S., Zabihi, M., Khorashadizadeh, H., Mohajerzadeh, A. H..  2017.  An Efficient NSKDP Authentication Method to Secure Smart Grid. 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE). :276–280.

Since the Information Networks are added to the current electricity networks, the security and privacy of individuals is challenged. This combination of technologies creates vulnerabilities in the context of smart grid power which disrupt the consumer energy supply. Methods based on encryption are against the countermeasures attacks that have targeted the integrity and confidentiality factors. Although the cryptography strategies are used in Smart Grid, key management which is different in size from tens to millions of keys (for meters), is considered as the critical processes. The Key mismanagement causes to reveal the secret keys for attacker, a symmetric key distribution method is recently suggested by [7] which is based on a symmetric key distribution, this strategy is very suitable for smart electric meters. The problem with this method is its vulnerability to impersonating respondents attack. The proposed approach to solve this problem is to send the both side identifiers in encrypted form based on hash functions and a random value, the proposed solution is appropriate for devices such as meters that have very little computing power.

Liu, Y., Li, R., Liu, X., Wang, J., Tang, C., Kang, H..  2017.  Enhancing Anonymity of Bitcoin Based on Ring Signature Algorithm. 2017 13th International Conference on Computational Intelligence and Security (CIS). :317–321.

Bitcoin is a decentralized digital currency, widely used for its perceived anonymity property, and has surged in popularity in recent years. Bitcoin publishes the complete transaction history in a public ledger, under pseudonyms of users. This is an alternative way to prevent double-spending attack instead of central authority. Therefore, if pseudonyms of users are attached to their identities in real world, the anonymity of Bitcoin will be a serious vulnerability. It is necessary to enhance anonymity of Bitcoin by a coin mixing service or other modifications in Bitcoin protocol. But in a coin mixing service, the relationship among input and output addresses is not hidden from the mixing service provider. So the mixing server still has the ability to track the transaction records of Bitcoin users. To solve this problem, We present a new coin mixing scheme to ensure that the relationship between input and output addresses of any users is invisible for the mixing server. We make use of a ring signature algorithm to ensure that the mixing server can't distinguish specific transaction from all these addresses. The ring signature ensures that a signature is signed by one of its users in the ring and doesn't leak any information about who signed it. Furthermore, the scheme is fully compatible with existing Bitcoin protocol and easily to scale for large amount of users.

2018-03-05
Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Evaluating the Effectiveness of Security Metrics for Dynamic Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :277–284.

It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.

Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Evaluating the Effectiveness of Security Metrics for Dynamic Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :277–284.

It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.

Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Evaluating the Effectiveness of Security Metrics for Dynamic Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :277–284.

It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.

2017-12-04
Alejandre, F. V., Cortés, N. C., Anaya, E. A..  2017.  Feature selection to detect botnets using machine learning algorithms. 2017 International Conference on Electronics, Communications and Computers (CONIELECOMP). :1–7.

In this paper, a novel method to do feature selection to detect botnets at their phase of Command and Control (C&C) is presented. A major problem is that researchers have proposed features based on their expertise, but there is no a method to evaluate these features since some of these features could get a lower detection rate than other. To this aim, we find the feature set based on connections of botnets at their phase of C&C, that maximizes the detection rate of these botnets. A Genetic Algorithm (GA) was used to select the set of features that gives the highest detection rate. We used the machine learning algorithm C4.5, this algorithm did the classification between connections belonging or not to a botnet. The datasets used in this paper were extracted from the repositories ISOT and ISCX. Some tests were done to get the best parameters in a GA and the algorithm C4.5. We also performed experiments in order to obtain the best set of features for each botnet analyzed (specific), and for each type of botnet (general) too. The results are shown at the end of the paper, in which a considerable reduction of features and a higher detection rate than the related work presented were obtained.

2018-05-24
HamlAbadi, K. G., Saghiri, A. M., Vahdati, M., TakhtFooladi, M. Dehghan, Meybodi, M. R..  2017.  A Framework for Cognitive Recommender Systems in the Internet of Things (IoT). 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI). :0971–0976.

Internet of Things (IoT) will be emerged over many of devices that are dynamically networked. Because of distributed and dynamic nature of IoT, designing a recommender system for them is a challenging problem. Recently, cognitive systems are used to design modern frameworks in different types of computer applications such as cognitive radio networks and cognitive peer-to-peer networks. A cognitive system can learn to improve its performance while operating under its unknown environment. In this paper, we propose a framework for cognitive recommender systems in IoT. To the best of our knowledge, there is no recommender system based on cognitive systems in the IoT. The proposed algorithm is compared with the existing recommender systems.

2018-08-23
Xia, D., Zhang, Y..  2017.  The fuzzy control of trust establishment. 2017 4th International Conference on Systems and Informatics (ICSAI). :655–659.

In the open network environment, the strange entities can establish the mutual trust through Automated Trust Negotiation (ATN) that is based on exchanging digital credentials. In traditional ATN, the attribute certificate required to either satisfied or not, and in the strategy, the importance of the certificate is same, it may cause some unnecessary negotiation failure. And in the actual situation, the properties is not just 0 or 1, it is likely to between 0 and 1, so the satisfaction degree is different, and the negotiation strategy need to be quantified. This paper analyzes the fuzzy negotiation process, in order to improve the trust establishment in high efficiency and accuracy further.

2017-12-12
Fatayer, T. S. A..  2017.  Generated Un-detectability Covert Channel Algorithm for Dynamic Secure Communication Using Encryption and Authentication. 2017 Palestinian International Conference on Information and Communication Technology (PICICT). :6–9.

The keys generated by (symmetric or asymmetric) have been still compromised by attackers. Cryptography algorithms need extra efforts to enhance the security of keys that are transferring between parities. Also, using cryptography algorithms increase time consumption and overhead cost through communication. Encryption is very important issue for protecting information from stealing. Unfortunately encryption can achieve confidentiality not integrity. Covert channel allows two parties to indirectly send information, where the main drawbacks of covert channel are detectability and the security of pre-agreement knowledge. In this paper, i merge between encryption, authentication and convert channel to achieve un-detectability covert channel. This channel guarantee integrity and confidentiality of covert data and sending data dynamically. I propose and implement un-detectability a covert channel using AES (Advanced Encryption Standard) algorithm and HMAC (Hashed Message Authentication Code). Where this channel is un-detectability with integrity and confidentiality agreement process between the sender and the receiver. Instead of sending fake key directly through channel, encryption and HMAC function used to hide fake key. After that investigations techniques for improving un-detectability of channel is proposed.

2018-03-05
Adeyemi, I. R., Razak, S. A., Venter, H. S., Salleh, M..  2017.  High-Level Online User Attribution Model Based on Human Polychronic-Monochronic Tendency. 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). :445–450.

User attribution process based on human inherent dynamics and preference is one area of research that is capable of elucidating and capturing human dynamics on the Internet. Prior works on user attribution concentrated on behavioral biometrics, 1-to-1 user identification process without consideration for individual preference and human inherent temporal tendencies, which is capable of providing a discriminatory baseline for online users, as well as providing a higher level classification framework for novel user attribution. To address these limitations, the study developed a temporal model, which comprises the human Polyphasia tendency based on Polychronic-Monochronic tendency scale measurement instrument and the extraction of unique human-centric features from server-side network traffic of 48 active users. Several machine-learning algorithms were applied to observe distinct pattern among the classes of the Polyphasia tendency, through which a logistic model tree was observed to provide higher classification accuracy for a 1-to-N user attribution process. The study further developed a high-level attribution model for higher-level user attribution process. The result from this study is relevant in online profiling process, forensic identification and profiling process, e-learning profiling process as well as in social network profiling process.

2018-01-16
Arita, S., Kozaki, S..  2017.  A Homomorphic Signature Scheme for Quadratic Polynomials. 2017 IEEE International Conference on Smart Computing (SMARTCOMP). :1–6.

Homomorphic signatures can provide a credential of a result which is indeed computed with a given function on a data set by an untrusted third party like a cloud server, when the input data are stored with the signatures beforehand. Boneh and Freeman in EUROCRYPT2011 proposed a homomorphic signature scheme for polynomial functions of any degree, however the scheme is not based on the normal short integer solution (SIS) problems as its security assumption. In this paper, we show a homomorphic signature scheme for quadratic polynomial functions those security assumption is based on the normal SIS problems. Our scheme constructs the signatures of multiplication as tensor products of the original signature vectors of input data so that homomorphism holds. Moreover, security of our scheme is reduced to the hardness of the SIS problems respect to the moduli such that one modulus is the power of the other modulus. We show the reduction by constructing solvers of the SIS problems respect to either of the moduli from any forger of our scheme.

2018-06-07
Ghafarian, A..  2017.  A hybrid method for detection and prevention of SQL injection attacks. 2017 Computing Conference. :833–838.

SQL injection attack (SQLIA) pose a serious security threat to the database driven web applications. This kind of attack gives attackers easily access to the application's underlying database and to the potentially sensitive information these databases contain. A hacker through specifically designed input, can access content of the database that cannot otherwise be able to do so. This is usually done by altering SQL statements that are used within web applications. Due to importance of security of web applications, researchers have studied SQLIA detection and prevention extensively and have developed various methods. In this research, after reviewing the existing research in this field, we present a new hybrid method to reduce the vulnerability of the web applications. Our method is specifically designed to detect and prevent SQLIA. Our proposed method is consists of three phases namely, the database design, implementation, and at the common gateway interface (CGI). Details of our approach along with its pros and cons are discussed in detail.

2017-12-12
Zahra, A., Shah, M. A..  2017.  IoT based ransomware growth rate evaluation and detection using command and control blacklisting. 2017 23rd International Conference on Automation and Computing (ICAC). :1–6.

Internet of things (IoT) is internetworking of various physical devices to provide a range of services and applications. IoT is a rapidly growing field, on an account of this; the security measurements for IoT should be at first concern. In the modern day world, the most emerging cyber-attack threat for IoT is ransomware attack. Ransomware is a kind of malware with the aim of rendering a victim's computer unusable or inaccessible, and then asking the user to pay a ransom to revert the destruction. In this paper we are evaluating ransomware attacks statistics for the past 2 years and the present year to estimate growth rate of the most emerging ransomware families from the last 3 years to evaluate most threatening ransomware attacks for IoT. Growth rate results shows that the number of attacks for Cryptowall and locky ransomware are notably increasing therefore, these ransomware families are potential threat to IoT. Moreover, we present a Cryptowall ransomware attack detection model based on the communication and behavioral study of Cryptowall for IoT environment. The proposed model observes incoming TCP/IP traffic through web proxy server then extracts TCP/IP header and uses command and control (C&C) server black listing to detect ransomware attacks.

2018-01-23
Ethelbert, O., Moghaddam, F. F., Wieder, P., Yahyapour, R..  2017.  A JSON Token-Based Authentication and Access Management Schema for Cloud SaaS Applications. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :47–53.

Cloud computing is significantly reshaping the computing industry built around core concepts such as virtualization, processing power, connectivity and elasticity to store and share IT resources via a broad network. It has emerged as the key technology that unleashes the potency of Big Data, Internet of Things, Mobile and Web Applications, and other related technologies; but it also comes with its challenges - such as governance, security, and privacy. This paper is focused on the security and privacy challenges of cloud computing with specific reference to user authentication and access management for cloud SaaS applications. The suggested model uses a framework that harnesses the stateless and secure nature of JWT for client authentication and session management. Furthermore, authorized access to protected cloud SaaS resources have been efficiently managed. Accordingly, a Policy Match Gate (PMG) component and a Policy Activity Monitor (PAM) component have been introduced. In addition, other subcomponents such as a Policy Validation Unit (PVU) and a Policy Proxy DB (PPDB) have also been established for optimized service delivery. A theoretical analysis of the proposed model portrays a system that is secure, lightweight and highly scalable for improved cloud resource security and management.

2018-02-06
Brannsten, M. R., Bloebaum, T. H., Johnsen, F. T., Reitan, B. K..  2017.  Kings Eye: Platform Independent Situational Awareness. 2017 International Conference on Military Communications and Information Systems (ICMCIS). :1–5.

Kings Eye is a platform independent situational awareness prototype for smart devices. Platform independence is important as there are more and more soldiers bringing their own devices, with different operating systems, into the field. The concept of Bring Your Own Device (BYOD) is a low-cost approach to equipping soldiers with situational awareness tools and by this it is important to facilitate and evaluate such solutions.

2018-03-19
Roselin, A. G., Nanda, P., Nepal, S..  2017.  Lightweight Authentication Protocol (LAUP) for 6LoWPAN Wireless Sensor Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :371–378.

6LoWPAN networks involving wireless sensors consist of resource starving miniature sensor nodes. Since secured authentication of these resource-constrained sensors is one of the important considerations during communication, use of asymmetric key distribution scheme may not be the perfect choice to achieve secure authentication. Recent research shows that Lucky Thirteen attack has compromised Datagram Transport Layer Security (DTLS) with Cipher Block Chaining (CBC) mode for key establishment. Even though EAKES6Lo and S3K techniques for key establishment follow the symmetric key establishment method, they strongly rely on a remote server and trust anchor for secure key distribution. Our proposed Lightweight Authentication Protocol (LAUP) used a symmetric key method with no preshared keys and comprised of four flights to establish authentication and session key distribution between sensors and Edge Router in a 6LoWPAN environment. Each flight uses freshly derived keys from existing information such as PAN ID (Personal Area Network IDentification) and device identities. We formally verified our scheme using the Scyther security protocol verification tool for authentication properties such as Aliveness, Secrecy, Non-Injective Agreement and Non-Injective Synchronization. We simulated and evaluated the proposed LAUP protocol using COOJA simulator with ContikiOS and achieved less computational time and low power consumption compared to existing authentication protocols such as the EAKES6Lo and SAKES.

2018-01-16
He, Z., Zhang, T., Lee, R. B..  2017.  Machine Learning Based DDoS Attack Detection from Source Side in Cloud. 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). :114–120.

Denial of service (DOS) attacks are a serious threat to network security. These attacks are often sourced from virtual machines in the cloud, rather than from the attacker's own machine, to achieve anonymity and higher network bandwidth. Past research focused on analyzing traffic on the destination (victim's) side with predefined thresholds. These approaches have significant disadvantages. They are only passive defenses after the attack, they cannot use the outbound statistical features of attacks, and it is hard to trace back to the attacker with these approaches. In this paper, we propose a DOS attack detection system on the source side in the cloud, based on machine learning techniques. This system leverages statistical information from both the cloud server's hypervisor and the virtual machines, to prevent network packages from being sent out to the outside network. We evaluate nine machine learning algorithms and carefully compare their performance. Our experimental results show that more than 99.7% of four kinds of DOS attacks are successfully detected. Our approach does not degrade performance and can be easily extended to broader DOS attacks.

Yamacc, M., Sankur, B., Cemgil, A. T..  2017.  Malicious users discrimination in organizec attacks using structured sparsity. 2017 25th European Signal Processing Conference (EUSIPCO). :266–270.

Communication networks can be the targets of organized and distributed attacks such as flooding-type DDOS attack in which malicious users aim to cripple a network server or a network domain. For the attack to have a major effect on the network, malicious users must act in a coordinated and time correlated manner. For instance, the members of the flooding attack increase their message transmission rates rapidly but also synchronously. Even though detection and prevention of the flooding attacks are well studied at network and transport layers, the emergence and wide deployment of new systems such as VoIP (Voice over IP) have turned flooding attacks at the session layer into a new defense challenge. In this study a structured sparsity based group anomaly detection system is proposed that not only can detect synchronized attacks, but also identify the malicious groups from normal users by jointly estimating their members, structure, starting and end points. Although we mainly focus on security on SIP (Session Initiation Protocol) servers/proxies which are widely used for signaling in VoIP systems, the proposed scheme can be easily adapted for any type of communication network system at any layer.

2018-02-06
Verma, D. C., de Mel, G..  2017.  Measures of Network Centricity for Edge Deployment of IoT Applications. 2017 IEEE International Conference on Big Data (Big Data). :4612–4620.

Edge Computing is a scheme to improve the performance, latency and security guidelines for IoT applications. However, edge deployment of an application also comes with additional complexity in management, an increased attack surface for security vulnerability, and could potentially result in a more expensive solution. As a result, the conditions under which an edge deployment of IoT applications delivers a better solution is not always obvious. Metrics which would be able to predict whether or not an IoT application is suitable for edge deployment can provide useful insights to address this question. In this paper, we examine the key performance indicators for IoT applications, namely the responsiveness, scalability and cost models for different types of IoT applications. Our analysis identifies that network centrality of an IoT application is a key characteristic which determines whether or not an IoT application is a good candidate for edge deployment. We discuss the different measures of network centrality that can be used to characterize applications, and the relative performance of edge deployment compared to centralized deployment for various IoT applications.