Biblio

Filters: Author is Wang, M.  [Clear All Filters]
2021-03-17
Wang, M., Xiao, J., Cai, Z..  2020.  An effective technique preventing differential cryptanalysis attack. 2020 IEEE 29th Asian Test Symposium (ATS). :1—6.
In this paper, an adaptive scan chain structure based plaintext analysis technique is proposed. The technology is implemented by three circuits, including adaptive scan chain circuit, plaintext analysis circuit and controller circuit. The plaintext is analyzed whether meet the characteristics of the differential cryptanalysis in the plaintext analysis module. The adaptive scan chain contains MUX, XOR and traditional scan chain, which is easy to implement. If the last bit of two plaintexts differs by one, the adaptive scan chain is controlled to input them into different scan chain. Compared with complicated scan chain, the structure of adaptive scan chain is variable and can mislead attackers who use differential cryptanalysis attack. Through experimental analysis, it is proved that the security of the adaptive scan chain structure is greatly improved.
2020-12-11
Fan, M., Luo, X., Liu, J., Wang, M., Nong, C., Zheng, Q., Liu, T..  2019.  Graph Embedding Based Familial Analysis of Android Malware using Unsupervised Learning. 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). :771—782.

The rapid growth of Android malware has posed severe security threats to smartphone users. On the basis of the familial trait of Android malware observed by previous work, the familial analysis is a promising way to help analysts better focus on the commonalities of malware samples within the same families, thus reducing the analytical workload and accelerating malware analysis. The majority of existing approaches rely on supervised learning and face three main challenges, i.e., low accuracy, low efficiency, and the lack of labeled dataset. To address these challenges, we first construct a fine-grained behavior model by abstracting the program semantics into a set of subgraphs. Then, we propose SRA, a novel feature that depicts the similarity relationships between the Structural Roles of sensitive API call nodes in subgraphs. An SRA is obtained based on graph embedding techniques and represented as a vector, thus we can effectively reduce the high complexity of graph matching. After that, instead of training a classifier with labeled samples, we construct malware link network based on SRAs and apply community detection algorithms on it to group the unlabeled samples into groups. We implement these ideas in a system called GefDroid that performs Graph embedding based familial analysis of AnDroid malware using unsupervised learning. Moreover, we conduct extensive experiments to evaluate GefDroid on three datasets with ground truth. The results show that GefDroid can achieve high agreements (0.707-0.883 in term of NMI) between the clustering results and the ground truth. Furthermore, GefDroid requires only linear run-time overhead and takes around 8.6s to analyze a sample on average, which is considerably faster than the previous work.

2020-11-17
Conway, A. E., Wang, M., Ljuca, E., Lebling, P. D..  2019.  A Dynamic Transport Overlay System for Mission-Oriented Dispersed Computing Over IoBT. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :815—820.

A dynamic overlay system is presented for supporting transport service needs of dispersed computing applications for moving data and/or code between network computation points and end-users in IoT or IoBT. The Network Backhaul Layered Architecture (Nebula) system combines network discovery and QoS monitoring, dynamic path optimization, online learning, and per-hop tunnel transport protocol optimization and synthesis over paths, to carry application traffic flows transparently over overlay tunnels. An overview is provided of Nebula's overlay system, software architecture, API, and implementation in the NRL CORE network emulator. Experimental emulation results demonstrate the performance benefits that Nebula provides under challenging networking conditions.

2020-11-23
Wang, M., Hussein, A., Rojas, R. F., Shafi, K., Abbass, H. A..  2018.  EEG-Based Neural Correlates of Trust in Human-Autonomy Interaction. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :350–357.
This paper aims at identifying the neural correlates of human trust in autonomous systems using electroencephalography (EEG) signals. Quantifying the relationship between trust and brain activities allows for real-time assessment of human trust in automation. This line of effort contributes to the design of trusted autonomous systems, and more generally, modeling the interaction in human-autonomy interaction. To study the correlates of trust, we use an investment game in which artificial agents with different levels of trustworthiness are employed. We collected EEG signals from 10 human subjects while they are playing the game; then computed three types of features from these signals considering the signal time-dependency, complexity and power spectrum using an autoregressive model (AR), sample entropy and Fourier analysis, respectively. Results of a mixed model analysis showed significant correlation between human trust and EEG features from certain electrodes. The frontal and the occipital area are identified as the predominant brain areas correlated with trust.
2019-04-01
Wang, M., Yang, Y., Zhu, M., Liu, J..  2018.  CAPTCHA Identification Based on Convolution Neural Network. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :364–368.
The CAPTCHA is an effective method commonly used in live interactive proofs on the Internet. The widely used CAPTCHAs are text-based schemes. In this paper, we document how we have broken such text-based scheme used by a website CAPTCHA. We use the sliding window to segment 1001 pieces of CAPTCHA to get 5900 images with single-character useful information, a total of 25 categories. In order to make the convolution neural network learn more image features, we augmented the data set to get 129924 pictures. The data set is trained and tested in AlexNet and GoogLeNet to get the accuracy of 87.45% and 98.92%, respectively. The experiment shows that the optimized network parameters can make the accuracy rate up to 92.7% in AlexNet and 98.96% in GoogLeNet.
2019-02-08
Wang, M., Zhu, W., Yan, S., Wang, Q..  2018.  SoundAuth: Secure Zero-Effort Two-Factor Authentication Based on Audio Signals. 2018 IEEE Conference on Communications and Network Security (CNS). :1-9.

Two-factor authentication (2FA) popularly works by verifying something the user knows (a password) and something she possesses (a token, popularly instantiated with a smart phone). Conventional 2FA systems require extra interaction like typing a verification code, which is not very user-friendly. For improved user experience, recent work aims at zero-effort 2FA, in which a smart phone placed close to a computer (where the user enters her username/password into a browser to log into a server) automatically assists with the authentication. To prove her possession of the smart phone, the user needs to prove the phone is on the login spot, which reduces zero-effort 2FA to co-presence detection. In this paper, we propose SoundAuth, a secure zero-effort 2FA mechanism based on (two kinds of) ambient audio signals. SoundAuth looks for signs of proximity by having the browser and the smart phone compare both their surrounding sounds and certain unpredictable near-ultrasounds; if significant distinguishability is found, SoundAuth rejects the login request. For the ambient signals comparison, we regard it as a classification problem and employ a machine learning technique to analyze the audio signals. Experiments with real login attempts show that SoundAuth not only is comparable to existent schemes concerning utility, but also outperforms them in terms of resilience to attacks. SoundAuth can be easily deployed as it is readily supported by most smart phones and major browsers.

2017-12-20
Wang, M., Li, Z., Lin, Y..  2017.  A Distributed Intrusion Detection System for Cognitive Radio Networks Based on Evidence Theory. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :226–232.

Reliable detection of intrusion is the basis of safety in cognitive radio networks (CRNs). So far, few scholars applied intrusion detection systems (IDSs) to combat intrusion against CRNs. In order to improve the performance of intrusion detection in CRNs, a distributed intrusion detection scheme has been proposed. In this paper, a method base on Dempster-Shafer's (D-S) evidence theory to detect intrusion in CRNs is put forward, in which the detection data and credibility of different local IDS Agent is combined by D-S in the cooperative detection center, so that different local detection decisions are taken into consideration in the final decision. The effectiveness of the proposed scheme is verified by simulation, and the results reflect a noticeable performance improvement between the proposed scheme and the traditional method.

2018-06-11
Wang, M., Zhang, Z., Xu, H..  2017.  DNS configurations and its security analyzing via resource records of the top-level domains. 2017 11th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID). :21–25.

Top-level domains play an important role in domain name system. Close attention should be paid to security of top level domains. In this paper, we found many configuration anomalies of top-level domains by analyzing their resource records. We got resource records of top-level domains from root name servers and authoritative servers of top-level domains. By comparing these resource records, we observed the anomalies in top-level domains. For example, there are 8 servers shared by more than one hundred top-level domains; Some TTL fields or SERIAL fields of resource records obtained on each NS servers of the same top-level domain were inconsistent; some authoritative servers of top-level domains were unreachable. Those anomalies may affect the availability of top-level domains. We hope that these anomalies can draw top-level domain administrators' attention to security of top-level domains.

2018-02-15
Wang, M., Qu, Z., He, X., Li, T., Jin, X., Gao, Z., Zhou, Z., Jiang, F., Li, J..  2017.  Real time fault monitoring and diagnosis method for power grid monitoring and its application. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). :1–6.

In Energy Internet mode, a large number of alarm information is generated when equipment exception and multiple faults in large power grid, which seriously affects the information collection, fault analysis and delays the accident treatment for the monitors. To this point, this paper proposed a method for power grid monitoring to monitor and diagnose fault in real time, constructed the equipment fault logical model based on five section alarm information, built the standard fault information set, realized fault information optimization, fault equipment location, fault type diagnosis, false-report message and missing-report message analysis using matching algorithm. The validity and practicality of the proposed method by an actual case was verified, which can shorten the time of obtaining and analyzing fault information, accelerate the progress of accident treatment, ensure the safe and stable operation of power grid.

2017-03-08
Xin, Wei, Wang, M., Shao, Shuai, Wang, Z., Zhang, Tao.  2015.  A variant of schnorr signature scheme for path-checking in RFID-based supply chains. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). :2608–2613.

The RFID technology has attracted considerable attention in recent years, and brings convenience to supply chain management. In this paper, we concentrate on designing path-checking protocols to check the valid paths in supply chains. By entering a valid path, the check reader can distinguish whether the tags have gone through the path or not. Based on modified schnorr signature scheme, we provide a path-checking method to achieve multi-signatures and final verification. In the end, we conduct security and privacy analysis to the scheme.