Biblio

Found 935 results

Filters: Keyword is Servers  [Clear All Filters]
2018-05-30
Shahriar, H., Bond, W..  2017.  Towards an Attack Signature Generation Framework for Intrusion Detection Systems. 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :597–603.
Attacks on web services are major concerns and can expose organizations valuable information resources. Despite there are increasing awareness in secure programming, we still find vulnerabilities in web services. To protect deployed web services, it is important to have defense techniques. Signaturebased Intrusion Detection Systems (IDS) have gained popularity to protect applications against attacks. However, signature IDSs have limited number of attack signatures. In this paper, we propose a Genetic Algorithm (GA)-based attack signature generation approach and show its application for web services. GA algorithm has the capability of generating new member from a set of initial population. We leverage this by generating new attack signatures at SOAP message level to overcome the challenge of limited number of attack signatures. The key contributions include defining chromosomes and fitness functions. The initial results show that the GA-based IDS can generate new signatures and complement the limitation of existing web security testing tools. The approach can generate new attack signatures for injection, privilege escalation, denial of service and information leakage.
2018-03-19
Jemel, M., Msahli, M., Serhrouchni, A..  2017.  Towards an Efficient File Synchronization between Digital Safes. 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). :136–143.
One of the main concerns of Cloud storage solutions is to offer the availability to the end user. Thus, addressing the mobility needs and device's variety has emerged as a major challenge. At first, data should be synchronized automatically and continuously when the user moves from one equipment to another. Secondly, the Cloud service should offer to the owner the possibility to share data with specific users. The paper's goal is to develop a secure framework that ensures file synchronization with high quality and minimal resource consumption. As a first step towards this goal, we propose the SyncDS protocol with its associated architecture. The synchronization protocol efficiency raises through the choice of the used networking protocol as well as the strategy of changes detection between two versions of file systems located in different devices. Our experiment results show that adopting the Hierarchical Hash Tree to detect the changes between two file systems and adopting the WebSocket protocol for the data exchanges improve the efficiency of the synchronization protocol.
2018-02-27
Canetti, R., Hogan, K., Malhotra, A., Varia, M..  2017.  A Universally Composable Treatment of Network Time. 2017 IEEE 30th Computer Security Foundations Symposium (CSF). :360–375.
The security of almost any real-world distributed system today depends on the participants having some "reasonably accurate" sense of current real time. Indeed, to name one example, the very authenticity of practically any communication on the Internet today hinges on the ability of the parties to accurately detect revocation of certificates, or expiration of passwords or shared keys.,,However, as recent attacks show, the standard protocols for determining time are subvertible, resulting in wide-spread security loss. Worse yet, we do not have security notions for network time protocols that (a) can be rigorously asserted, and (b) rigorously guarantee security of applications that require a sense of real time.,,We propose such notions, within the universally composable (UC) security framework. That is, we formulate ideal functionalities that capture a number of prevalent forms of time measurement within existing systems. We show how they can be realized by real-world protocols, and how they can be used to assert security of time-reliant applications - specifically, certificates with revocation and expiration times. This allows for relatively clear and modular treatment of the use of time consensus in security-sensitive systems.,,Our modeling and analysis are done within the existing UC framework, in spite of its asynchronous, event-driven nature. This allows incorporating the use of real time within the existing body of analytical work done in this framework. In particular it allows for rigorous incorporation of real time within cryptographic tools and primitives.
2020-07-20
Liu, Zechao, Wang, Xuan, Cui, Lei, Jiang, Zoe L., Zhang, Chunkai.  2017.  White-box traceable dynamic attribute based encryption. 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). :526–530.
Ciphertext policy attribute-based encryption (CP-ABE) is a promising technology that offers fine-grained access control over encrypted data. In a CP-ABE scheme, any user can decrypt the ciphertext using his secret key if his attributes satisfy the access policy embedded in the ciphertext. Since the same ciphertext can be decrypted by multiple users with their own keys, the malicious users may intentionally leak their decryption keys for financial profits. So how to trace the malicious users becomes an important issue in a CP-ABE scheme. In addition, from the practical point of view, users may leave the system due to resignation or dismissal. So user revocation is another hot issue that should be solved. In this paper, we propose a practical CP-ABE scheme. On the one hand, our scheme has the properties of traceability and large universe. On the other hand, our scheme can solve the dynamic issue of user revocation. The proposed scheme is proved selectively secure in the standard model.
2018-01-23
Malathi, V., Balamurugan, B., Eshwar, S..  2017.  Achieving Privacy and Security Using QR Code by Means of Encryption Technique in ATM. 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM). :281–285.

Smart Card has complications with validation and transmission process. Therefore, by using peeping attack, the secret code was stolen and secret filming while entering Personal Identification Number at the ATM machine. We intend to develop an authentication system to banks that protects the asset of user's. The data of a user is to be ensured that secure and isolated from the data leakage and other attacks Therefore, we propose a system, where ATM machine will have a QR code in which the information's are encrypted corresponding to the ATM machine and a mobile application in the customer's mobile which will decrypt the encoded QR information and sends the information to the server and user's details are displayed in the ATM machine and transaction can be done. Now, the user securely enters information to transfer money without risk of peeping attack in Automated Teller Machine by just scanning the QR code at the ATM by mobile application. Here, both the encryption and decryption technique are carried out by using Triple DES Algorithm (Data Encryption Standard).

2018-02-21
Lai, J., Duan, B., Su, Y., Li, L., Yin, Q..  2017.  An active security defense strategy for wind farm based on automated decision. 2017 IEEE Power Energy Society General Meeting. :1–5.

With the development of smart grid, information and energy integrate deeply. For remote monitoring and cluster management, SCADA system of wind farm should be connected to Internet. However, communication security and operation risk put forward a challenge to data network of the wind farm. To address this problem, an active security defense strategy combined whitelist and security situation assessment is proposed. Firstly, the whitelist is designed by analyzing the legitimate packet of Modbus on communication of SCADA servers and PLCs. Then Knowledge Automation is applied to establish the Decision Requirements Diagram (DRD) for wind farm security. The D-S evidence theory is adopted to assess operation situation of wind farm and it together with whitelist offer the security decision for wind turbine. This strategy helps to eliminate the wind farm owners' security concerns of data networking, and improves the integrity of the cyber security defense for wind farm.

2018-02-06
Eslami, M., Zheng, G., Eramian, H., Levchuk, G..  2017.  Anomaly Detection on Bipartite Graphs for Cyber Situational Awareness and Threat Detection. 2017 IEEE International Conference on Big Data (Big Data). :4741–4743.

Data from cyber logs can often be represented as a bipartite graph (e.g. internal IP-external IP, user-application, or client-server). State-of-the-art graph based anomaly detection often generalizes across all types of graphs — namely bipartite and non-bipartite. This confounds the interpretation and use of specific graph features such as degree, page rank, and eigencentrality that can provide a security analyst with rapid situational awareness of their network. Furthermore, graph algorithms applied to data collected from large, distributed enterprise scale networks require accompanying methods that allow them to scale to the data collected. In this paper, we provide a novel, scalable, directional graph projection framework that operates on cyber logs that can be represented as bipartite graphs. This framework computes directional graph projections and identifies a set of interpretable graph features that describe anomalies within each partite.

2018-05-30
Alamaniotis, M., Tsoukalas, L. H., Bourbakis, N..  2017.  Anticipatory Driven Nodal Electricity Load Morphing in Smart Cities Enhancing Consumption Privacy. 2017 IEEE Manchester PowerTech. :1–6.

Integration of information technologies with the current power infrastructure promises something further than a smart grid: implementation of smart cities. Power efficient cities will be a significant step toward greener cities and a cleaner environment. However, the extensive use of information technologies in smart cities comes at a cost of reduced privacy. In particular, consumers' power profiles will be accessible by third parties seeking information over consumers' personal habits. In this paper, a methodology for enhancing privacy of electricity consumption patterns is proposed and tested. The proposed method exploits digital connectivity and predictive tools offered via smart grids to morph consumption patterns by grouping consumers via an optimization scheme. To that end, load anticipation, correlation and Theil coefficients are utilized synergistically with genetic algorithms to find an optimal assembly of consumers whose aggregated pattern hides individual consumption features. Results highlight the efficiency of the proposed method in enhancing privacy in the environment of smart cities.

2018-04-02
Leaden, G., Zimmermann, M., DeCusatis, C., Labouseur, A. G..  2017.  An API Honeypot for DDoS and XSS Analysis. 2017 IEEE MIT Undergraduate Research Technology Conference (URTC). :1–4.

Honeypots are servers or systems built to mimic critical parts of a network, distracting attackers while logging their information to develop attack profiles. This paper discusses the design and implementation of a honeypot disguised as a REpresentational State Transfer (REST) Application Programming Interface (API). We discuss the motivation for this work, design features of the honeypot, and experimental performance results under various traffic conditions. We also present analyses of both a distributed denial of service (DDoS) attack and a cross-site scripting (XSS) malware insertion attempt against this honeypot.

2018-05-16
Patra, M. K..  2017.  An architecture model for smart city using Cognitive Internet of Things (CIoT). 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–6.

In this paper, a distributed architecture for the implementation of smart city has been proposed to facilitate various smart features like solid waste management, efficient urban mobility and public transport, smart parking, robust IT connectivity, safety and security of citizens and a roadmap for achieving it. How massive volume of IoT data can be analyzed and a layered architecture of IoT is explained. Why data integration is important for analyzing and processing of data collected by the different smart devices like sensors, actuators and RFIDs is discussed. The wireless sensor network can be used to sense the data from various locations but there has to be more to it than stuffing sensors everywhere for everything. Why only the sensor is not sufficient for data collection and how human beings can be used to collect data is explained. There is some communication protocols between the volunteers engaged in collecting data to restrict the sharing of data and ensure that the target area is covered with minimum numbers of volunteers. Every volunteer should cover some predefined area to collect data. Then the proposed architecture model is having one central server to store all data in a centralized server. The data processing and the processing of query being made by the user is taking place in centralized server.

2018-02-06
Yasumura, Y., Imabayashi, H., Yamana, H..  2017.  Attribute-Based Proxy Re-Encryption Method for Revocation in Cloud Data Storage. 2017 IEEE International Conference on Big Data (Big Data). :4858–4860.

In the big data era, many users upload data to cloud while security concerns are growing. By using attribute-based encryption (ABE), users can securely store data in cloud while exerting access control over it. Revocation is necessary for real-world applications of ABE so that revoked users can no longer decrypt data. In actual implementations, however, revocation requires re-encryption of data in client side through download, decrypt, encrypt, and upload, which results in huge communication cost between the client and the cloud depending on the data size. In this paper, we propose a new method where the data can be re-encrypted in cloud without downloading any data. The experimental result showed that our method reduces the communication cost by one quarter in comparison with the trivial solution where re-encryption is performed in client side.

2018-01-16
Kumar, P. S., Parthiban, L., Jegatheeswari, V..  2017.  Auditing of Data Integrity over Dynamic Data in Cloud. 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM). :43–48.

Cloud computing is a new computing paradigm which encourages remote data storage. This facility shoots up the necessity of secure data auditing mechanism over outsourced data. Several mechanisms are proposed in the literature for supporting dynamic data. However, most of the existing schemes lack the security feature, which can withstand collusion attacks between the cloud server and the abrogated users. This paper presents a technique to overthrow the collusion attacks and the data auditing mechanism is achieved by means of vector commitment and backward unlinkable verifier local revocation group signature. The proposed work supports multiple users to deal with the remote cloud data. The performance of the proposed work is analysed and compared with the existing techniques and the experimental results are observed to be satisfactory in terms of computational and time complexity.

2018-02-14
Kimiyama, H., Yonezaki, N., Tsutsumi, T., Sano, K., Yamaki, H., Ueno, Y., Sasaki, R., Kobayashi, H..  2017.  Autonomous and distributed internet security (AIS) infrastructure for safe internet. 2017 8th International Conference on the Network of the Future (NOF). :106–113.

Cyber attacks, (e.g., DDoS), on computers connected to the Internet occur everyday. A DDoS attack in 2016 that used “Mirai botnet” generated over 600 Gbit/s traffic, which was twice as that of last year. In view of this situation, we can no longer adequately protect our computers using current end-point security solutions and must therefore introduce a new method of protection that uses distributed nodes, e.g., routers. We propose an Autonomous and Distributed Internet Security (AIS) infrastructure that provides two key functions: first, filtering source address spoofing packets (proactive filter), and second, filtering malicious packets that are observed at the end point (reactive filter) at the closest malicious packets origins. We also propose three types of Multi-Layer Binding Routers (MLBRs) to realize these functions. We implemented the MLBRs and constructed experimental systems to simulate DDoS attacks. Results showed that all malicious packets could be filtered by using the AIS infrastructure.

2018-02-06
Zebboudj, S., Brahami, R., Mouzaia, C., Abbas, C., Boussaid, N., Omar, M..  2017.  Big Data Source Location Privacy and Access Control in the Framework of IoT. 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B). :1–5.

In the recent years, we have observed the development of several connected and mobile devices intended for daily use. This development has come with many risks that might not be perceived by the users. These threats are compromising when an unauthorized entity has access to private big data generated through the user objects in the Internet of Things. In the literature, many solutions have been proposed in order to protect the big data, but the security remains a challenging issue. This work is carried out with the aim to provide a solution to the access control to the big data and securing the localization of their generator objects. The proposed models are based on Attribute Based Encryption, CHORD protocol and $μ$TESLA. Through simulations, we compare our solutions to concurrent protocols and we show its efficiency in terms of relevant criteria.

2018-08-23
Wong, K., Hunter, A..  2017.  Bluetooth for decoy systems: A practical study. 2017 IEEE Conference on Communications and Network Security (CNS). :86–387.

We present an approach to tracking the behaviour of an attacker on a decoy system, where the decoy communicates with the real system only through low energy bluetooth. The result is a low-cost solution that does not interrupt the live system, while limiting potential damage. The attacker has no way to detect that they are being monitored, while their actions are being logged for further investigation. The system has been physically implemented using Raspberry PI and Arduino boards to replicate practical performance.

2018-01-16
Diovu, R. C., Agee, J. T..  2017.  A cloud-based openflow firewall for mitigation against DDoS attacks in smart grid AMI networks. 2017 IEEE PES PowerAfrica. :28–33.

Recent architectures for the advanced metering infrastructure (AMI) have incorporated several back-end systems that handle billing and other smart grid control operations. The non-availability of metering data when needed or the untimely delivery of data needed for control operations will undermine the activities of these back-end systems. Unfortunately, there are concerns that cyber attacks such as distributed denial of service (DDoS) will manifest in magnitude and complexity in a smart grid AMI network. Such attacks will range from a delay in the availability of end user's metering data to complete denial in the case of a grounded network. This paper proposes a cloud-based (IaaS) firewall for the mitigation of DDoS attacks in a smart grid AMI network. The proposed firewall has the ability of not only mitigating the effects of DDoS attack but can prevent the attack before they are launched. Our proposed firewall system leverages on cloud computing technology which has an added advantage of reducing the burden of data computations and storage for smart grid AMI back-end systems. The openflow firewall proposed in this study is a better security solution with regards to the traditional on-premises DoS solutions which cannot cope with the wide range of new attacks targeting the smart grid AMI network infrastructure. Simulation results generated from the study show that our model can guarantee the availability of metering/control data and could be used to improve the QoS of the smart grid AMI network under a DDoS attack scenario.

2018-04-02
Elgzil, A., Chow, C. E., Aljaedi, A., Alamri, N..  2017.  Cyber Anonymity Based on Software-Defined Networking and Onion Routing (SOR). 2017 IEEE Conference on Dependable and Secure Computing. :358–365.

Cyber anonymity tools have attracted wide attention in resisting network traffic censorship and surveillance, and have played a crucial role for open communications over the Internet. The Onion Routing (Tor) is considered the prevailing technique for circumventing the traffic surveillance and providing cyber anonymity. Tor operates by tunneling a traffic through a series of relays, making such traffic to appear as if it originated from the last relay in the traffic path, rather than from the original user. However, Tor faced some obstructions in carrying out its goal effectively, such as insufficient performance and limited capacity. This paper presents a cyber anonymity technique based on software-defined networking; named SOR, which builds onion-routed tunnels across multiple anonymity service providers. SOR architecture enables any cloud tenants to participate in the anonymity service via software-defined networking. Our proposed architecture leverages the large capacity and robust connectivity of the commercial cloud networks to elevate the performance of the cyber anonymity service.

2018-01-16
Kansal, V., Dave, M..  2017.  DDoS attack isolation using moving target defense. 2017 International Conference on Computing, Communication and Automation (ICCCA). :511–514.

Among the several threats to cyber services Distributed denial-of-service (DDoS) attack is most prevailing nowadays. DDoS involves making an online service unavailable by flooding the bandwidth or resources of a targeted system. It is easier for an insider having legitimate access to the system to circumvent any security controls thus resulting in insider attack. To mitigate insider assisted DDoS attacks, this paper proposes a moving target defense mechanism that involves isolation of insiders from innocent clients by using attack proxies. Further using the concept of load balancing an effective algorithm to detect and handle insider attack is developed with the aim of maximizing attack isolation while minimizing the total number of proxies used.

2018-03-19
Bulusu, S. T., Laborde, R., Wazan, A. S., Barrere, F., Benzekri, A..  2017.  Describing Advanced Persistent Threats Using a Multi-Agent System Approach. 2017 1st Cyber Security in Networking Conference (CSNet). :1–3.

Advanced Persistent Threats are increasingly becoming one of the major concerns to many industries and organizations. Currently, there exists numerous articles and industrial reports describing various case studies of recent notable Advanced Persistent Threat attacks. However, these documents are expressed in natural language. This limits the efficient reusability of the threat intelligence information due to ambiguous nature of the natural language. In this article, we propose a model to formally represent Advanced Persistent Threats as multi-agent systems. Our model is inspired by the concepts of agent-oriented social modelling approaches, generally used for software security requirement analysis.

2018-05-24
Zhongchao, W., Ligang, H., Baojun, T., Wensi, W., Jinhui, W..  2017.  Design and Verification of a Novel IoT Node Protocol. 2017 13th IEEE International Conference on Electronic Measurement Instruments (ICEMI). :201–205.

The IoT node works mostly in a specific scenario, and executes the fixed program. In order to make it suitable for more scenarios, this paper introduces a kind of the IoT node, which can change program at any time. And this node has intelligent and dynamic reconfigurable features. Then, a transport protocol is proposed. It enables this node to work in different scenarios and perform corresponding program. Finally, we use Verilog to design and FPGA to verify. The result shows that this protocol is feasible. It also offers a novel way of the IoT.

2017-12-28
Chen, L., Dai, W., Qiu, M., Jiang, N..  2017.  A Design for Scalable and Secure Key-Value Stores. 2017 IEEE International Conference on Smart Cloud (SmartCloud). :216–221.

Reliable and scalable storage systems are key to cloud-based applications. In cloud storage, users store their data on remote servers rather than their local computers. Secure storage is used to ensure the safety of data in clouds. As more and more users rely on third-party cloud vendors to store their data, concerns have arisen among users and cloud providers. Encryption-based approaches are commonly used in secure storage systems. Data are encrypted and stored on persistent storage like disks and flash memories. When data are needed by the users, they are decrypted and accessed by the users. This way of managing data hurts the scalability and throughput of cloud systems. In the meantime, cloud systems have to perform fault-tolerance strategies on data, which also brings performance deduction. The combination of these issues cause a high price for data security in cloud systems. Aware of such issues. we propose methods to reduce the overhead of secure storage while guaranteeing the safeness of data.

2017-12-12
Zander, S..  2017.  Detecting Covert Channels in FPS Online Games. 2017 IEEE 42nd Conference on Local Computer Networks (LCN). :555–558.

Encryption is often not sufficient to secure communication, since it does not hide that communication takes place or who is communicating with whom. Covert channels hide the very existence of communication enabling individuals to communicate secretly. Previous work proposed a covert channel hidden inside multi-player first person shooter online game traffic (FPSCC). FPSCC has a low bit rate, but it is practically impossible to eliminate other than by blocking the overt game trac. This paper shows that with knowledge of the channel’s encoding and using machine learning techniques, FPSCC can be detected with an accuracy of 95% or higher.

2018-03-05
Gonzalez, D., Hayajneh, T..  2017.  Detection and Prevention of Crypto-Ransomware. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :472–478.

Crypto-ransomware is a challenging threat that ciphers a user's files while hiding the decryption key until a ransom is paid by the victim. This type of malware is a lucrative business for cybercriminals, generating millions of dollars annually. The spread of ransomware is increasing as traditional detection-based protection, such as antivirus and anti-malware, has proven ineffective at preventing attacks. Additionally, this form of malware is incorporating advanced encryption algorithms and expanding the number of file types it targets. Cybercriminals have found a lucrative market and no one is safe from being the next victim. Encrypting ransomware targets business small and large as well as the regular home user. This paper discusses ransomware methods of infection, technology behind it and what can be done to help prevent becoming the next victim. The paper investigates the most common types of crypto-ransomware, various payload methods of infection, typical behavior of crypto ransomware, its tactics, how an attack is ordinarily carried out, what files are most commonly targeted on a victim's computer, and recommendations for prevention and safeguards are listed as well.

2017-12-20
Schäfer, C..  2017.  Detection of compromised email accounts used for spamming in correlation with origin-destination delivery notification extracted from metadata. 2017 5th International Symposium on Digital Forensic and Security (ISDFS). :1–6.

Fifty-four percent of the global email traffic in October 2016 was spam and phishing messages. Those emails were commonly sent from compromised email accounts. Previous research has primarily focused on detecting incoming junk mail but not locally generated spam messages. State-of-the-art spam detection methods generally require the content of the email to be able to classify it as either spam or a regular message. This content is not available within encrypted messages or is prohibited due to data privacy. The object of the research presented is to detect an anomaly with the Origin-Destination Delivery Notification method, which is based on the geographical origin and destination as well as the Delivery Status Notification of the remote SMTP server without the knowledge of the email content. The proposed method detects an abused account after a few transferred emails; it is very flexible and can be adjusted for every environment and requirement.

2018-03-19
Das, A., Shen, M. Y., Shashanka, M., Wang, J..  2017.  Detection of Exfiltration and Tunneling over DNS. 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). :737–742.

This paper proposes a method to detect two primary means of using the Domain Name System (DNS) for malicious purposes. We develop machine learning models to detect information exfiltration from compromised machines and the establishment of command & control (C&C) servers via tunneling. We validate our approach by experiments where we successfully detect a malware used in several recent Advanced Persistent Threat (APT) attacks [1]. The novelty of our method is its robustness, simplicity, scalability, and ease of deployment in a production environment.