Biblio
The utilization of "cloud storage services (CSS)", empowering people to store their data in cloud and avoid from maintenance cost and local data storage. Various data integrity auditing (DIA) frameworks are carried out to ensure the quality of data stored in cloud. Mostly, if not all, of current plans, a client requires to utilize his private key (PK) to generate information authenticators for knowing the DIA. Subsequently, the client needs to have hardware token to store his PK and retain a secret phrase to actuate this PK. In this hardware token is misplaced or password is forgotten, the greater part of existing DIA plans would be not able to work. To overcome this challenge, this research work suggests another DIA without "private key storage (PKS)"plan. This research work utilizes biometric information as client's fuzzy private key (FPK) to evade utilizing hardware token. In the meantime, the plan might in any case viably complete the DIA. This research work uses a direct sketch with coding and mistake correction procedures to affirm client identity. Also, this research work plan another mark conspire that helps block less. Verifiability, yet in addition is viable with linear sketch Keywords– Data integrity auditing (DIA), Cloud Computing, Block less Verifiability, fuzzy biometric data, secure cloud storage (SCS), key exposure resilience (KER), Third Party Auditor (TPA), cloud audit server (CAS), cloud storage server (CSS), Provable Data Possession (PDP)
The growing adoption of IoT devices is creating a huge positive impact on human life. However, it is also making the network more vulnerable to security threats. One of the major threats is malicious traffic injection attack, where the hacked IoT devices overwhelm the application servers causing large-scale service disruption. To address such attacks, we propose a Software Defined Networking based predictive alarm manager solution for malicious traffic detection and mitigation at the IoT Gateway. Our experimental results with the proposed solution confirms the detection of malicious flows with nearly 95% precision on average and at its best with around 99% precision.
In this research a secured framework is developed to support effective digital service delivery for government to stakeholders. It is developed to provide secured network to the remote area of Bangladesh. The proposed framework has been tested through the rough simulation of the network infrastructure. Each and every part of the digital service network has been analyzed in the basis of security purpose. Through the simulation the security issues are identified and proposed a security policy framework for effective service. Basing on the findings the issues are included and the framework has designed as the solution of security issues. A complete security policy framework has prepared on the basis of the network topology. As the output the stakeholders will get a better and effective data service. This model is better than the other expected network infrastructure. Till now in Bangladesh none of the network infrastructure are security policy based. This is needed to provide the secured network to remote area from government.
Domain Name System (DNS) is the Internet's system for converting alphabetic names into numeric IP addresses. It is one of the early and vulnerable network protocols, which has several security loopholes that have been exploited repeatedly over the years. The clustering task for the automatic recognition of these attacks uses machine learning approaches based on semi-supervised learning. A family of bio-inspired algorithms, well known as Swarm Intelligence (SI) methods, have recently emerged to meet the requirements for the clustering task and have been successfully applied to various real-world clustering problems. In this paper, Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Kmeans, which is one of the most popular cluster algorithms, have been applied. Furthermore, hybrid algorithms consisting of Kmeans and PSO, and Kmeans and ABC have been proposed for the clustering process. The Canadian Institute for Cybersecurity (CIC) data set has been used for this investigation. In addition, different measures of clustering performance have been used to compare the different algorithms.
With the rapid development of 5G, the Internet of Things (IoT) and edge computing technologies dramatically improve smart industries' efficiency, such as healthcare, smart agriculture, and smart city. IoT is a data-driven system in which many smart devices generate and collect a massive amount of user privacy data, which may be used to improve users' efficiency. However, these data tend to leak personal privacy when people send it to the Internet. Differential privacy (DP) provides a method for measuring privacy protection and a more flexible privacy protection algorithm. In this paper, we study an estimation problem and propose a new frequency estimation algorithm named MFEA that redesigns the publish process. The algorithm maps a finite data set to an integer range through a hash function, then initializes the data vector according to the mapped value and adds noise through the randomized response. The frequency of all interference data is estimated with maximum likelihood. Compared with the current traditional frequency estimation, our approach achieves better algorithm complexity and error control while satisfying differential privacy protection (LDP).