Biblio

Found 935 results

Filters: Keyword is Servers  [Clear All Filters]
2023-05-11
Karayat, Ritik, Jadhav, Manish, Kondaka, Lakshmi Sudha, Nambiar, Ashwath.  2022.  Web Application Penetration Testing & Patch Development Using Kali Linux. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1392–1397.
Nowadays, safety is a first-rate subject for all applications. There has been an exponential growth year by year in the number of businesses going digital since the few decades following the birth of the Internet. In these technologically advanced times, cyber security is a must mainly for internet applications, so we have the notion of diving deeper into the Cyber security domain and are determined to make a complete project. We aim to develop a website portal for ease of communication between us and the end user. Utilizing the power of python scripting and flask server to make independent automated tools for detection of SQLI, XSS & a Spider(Content Discovery Tool). We have also integrated skipfish as a website vulnerability scanner to our project using python and Kali Linux. Since conducting a penetration test on another website without permission is not legal, we thought of building a dummy website prone to OS Command Injection in addition to the above-mentioned attacks. A well-documented report will be generated after the penetration test/ vulnerability scan. In case the website is vulnerable, patching of the website will be done with the user's consent.
ISSN: 2575-7288
2023-06-22
Sai, A N H Dhatreesh, Tilak, B H, Sanjith, N Sai, Suhas, Padi, Sanjeetha, R.  2022.  Detection and Mitigation of Low and Slow DDoS attack in an SDN environment. 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER). :106–111.

Distributed Denial of Service (DDoS) attacks aim to make a server unresponsive by flooding the target server with a large volume of packets (Volume based DDoS attacks), by keeping connections open for a long time and exhausting the resources (Low and Slow DDoS attacks) or by targeting protocols (Protocol based attacks). Volume based DDoS attacks that flood the target server with a large number of packets are easier to detect because of the abnormality in packet flow. Low and Slow DDoS attacks, however, make the server unavailable by keeping connections open for a long time, but send traffic similar to genuine traffic, making detection of such attacks difficult. This paper proposes a solution to detect and mitigate one such Low and slow DDoS attack, Slowloris in an SDN (Software Defined Networking) environment. The proposed solution involves communication between the detection and mitigation module and the controller of the Software Defined Network to get data to detect and mitigate low and slow DDoS attack.

2023-07-21
Muhammad Nabi, Masooma, Shah, Munam Ali.  2022.  A Fuzzy Approach to Trust Management in Fog Computing. 2022 24th International Multitopic Conference (INMIC). :1—6.

The Internet of Things (IoT) technology has revolutionized the world where anything is smartly connected and is accessible. The IoT makes use of cloud computing for processing and storing huge amounts of data. In some way, the concept of fog computing has emerged between cloud and IoT devices to address the issue of latency. When a fog node exchanges data for completing a particular task, there are many security and privacy risks. For example, offloading data to a rogue fog node might result in an illegal gathering or modification of users' private data. In this paper, we rely on trust to detect and detach bad fog nodes. We use a Mamdani fuzzy method and we consider a hospital scenario with many fog servers. The aim is to identify the malicious fog node. Metrics such as latency and distance are used in evaluating the trustworthiness of each fog server. The main contribution of this study is identifying how fuzzy logic configuration could alter the trust value of fog nodes. The experimental results show that our method detects the bad fog device and establishes its trustworthiness in the given scenario.

2022-12-20
Siewert, Hendrik, Kretschmer, Martin, Niemietz, Marcus, Somorovsky, Juraj.  2022.  On the Security of Parsing Security-Relevant HTTP Headers in Modern Browsers. 2022 IEEE Security and Privacy Workshops (SPW). :342–352.

Web browsers are among the most important but also complex software solutions to access the web. It is therefore not surprising that web browsers are an attractive target for attackers. Especially in the last decade, security researchers and browser vendors have developed sandboxing mechanisms like security-relevant HTTP headers to tackle the problem of getting a more secure browser. Although the security community is aware of the importance of security-relevant HTTP headers, legacy applications and individual requests from different parties have led to possible insecure configurations of these headers. Even if specific security headers are configured correctly, conflicts in their functionalities may lead to unforeseen browser behaviors and vulnerabilities. Recently, the first work which analyzed duplicated headers and conflicts in headers was published by Calzavara et al. at USENIX Security [1]. The authors focused on inconsistent protections by using both, the HTTP header X-Frame-Options and the framing protection of the Content-Security-Policy.We extend their work by analyzing browser behaviors when parsing duplicated headers, conflicting directives, and values that do not conform to the defined ABNF metalanguage specification. We created an open-source testbed running over 19,800 test cases, at which nearly 300 test cases are executed in the set of 66 different browsers. Our work shows that browsers conform to the specification and behave securely. However, all tested browsers behave differently when it comes, for example, to parsing the Strict-Transport-Security header. Moreover, Chrome, Safari, and Firefox behave differently if the header contains a character, which is not allowed by the defined ABNF. This results in the protection mechanism being fully enforced, partially enforced, or not enforced and thus completely bypassable.

ISSN: 2770-8411

2023-01-20
Joshi, Sanskruti, Li, Ruixiao, Bhattacharjee, Shameek, Das, Sajal K., Yamana, Hayato.  2022.  Privacy-Preserving Data Falsification Detection in Smart Grids using Elliptic Curve Cryptography and Homomorphic Encryption. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :229—234.
In an advanced metering infrastructure (AMI), the electric utility collects power consumption data from smart meters to improve energy optimization and provides detailed information on power consumption to electric utility customers. However, AMI is vulnerable to data falsification attacks, which organized adversaries can launch. Such attacks can be detected by analyzing customers' fine-grained power consumption data; however, analyzing customers' private data violates the customers' privacy. Although homomorphic encryption-based schemes have been proposed to tackle the problem, the disadvantage is a long execution time. This paper proposes a new privacy-preserving data falsification detection scheme to shorten the execution time. We adopt elliptic curve cryptography (ECC) based on homomorphic encryption (HE) without revealing customer power consumption data. HE is a form of encryption that permits users to perform computations on the encrypted data without decryption. Through ECC, we can achieve light computation. Our experimental evaluation showed that our proposed scheme successfully achieved 18 times faster than the CKKS scheme, a common HE scheme.
2023-06-16
Lavania, Kushagra, Gupta, Gaurang, Kumar, D.V.N. Siva.  2022.  A Secure and Efficient Fine-Grained Deletion Approach over Encrypted Data. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :1123—1128.
Documents are a common method of storing infor-mation and one of the most conventional forms of expression of ideas. Cloud servers store a user's documents with thousands of other users in place of physical storage devices. Indexes corresponding to the documents are also stored at the cloud server to enable the users to retrieve documents of their interest. The index includes keywords, document identities in which the keywords appear, along with Term Frequency-Inverse Document Frequency (TF-IDF) values which reflect the keywords' relevance scores of the dataset. Currently, there are no efficient methods to delete keywords from millions of documents over cloud servers while avoiding any compromise to the user's privacy. Most of the existing approaches use algorithms that divide a bigger problem into sub-problems and then combine them like divide and conquer problems. These approaches don't focus entirely on fine-grained deletion. This work is focused on achieving fine-grained deletion of keywords by keeping the size of the TF-IDF matrix constant after processing the deletion query, which comprises of keywords to be deleted. The experimental results of the proposed approach confirm that the precision of ranked search still remains very high after deletion without recalculation of the TF-IDF matrix.
2022-12-23
Montano, Isabel Herrera, de La Torre Díez, Isabel, Aranda, Jose Javier García, Diaz, Juan Ramos, Cardín, Sergio Molina, López, Juan José Guerrero.  2022.  Secure File Systems for the Development of a Data Leak Protection (DLP) Tool Against Internal Threats. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–7.
Data leakage by employees is a matter of concern for companies and organizations today. Previous studies have shown that existing Data Leakage Protection (DLP) systems on the market, the more secure they are, the more intrusive and tedious they are to work with. This paper proposes and assesses the implementation of four technologies that enable the development of secure file systems for insider threat-focused, low-intrusive and user-transparent DLP tools. Two of these technologies are configurable features of the Windows operating system (Minifilters and Server Message Block), the other two are virtual file systems (VFS) Dokan and WinFsp, which mirror the real file system (RFS) allowing it to incorporate security techniques. In the assessment of the technologies, it was found that the implementation of VFS was very efficient and simple. WinFsp and Dokan presented a performance of 51% and 20% respectively, with respect to the performance of the operations in the RFS. This result may seem relatively low, but it should be taken into account that the calculation includes read and write encryption and decryption operations as appropriate for each prototype. Server Message Block (SMB) presented a low performance (3%) so it is not considered viable for a solution like this, while Minifilters present the best performance but require high programming knowledge for its evolution. The prototype presented in this paper and its strategy provides an acceptable level of comfort for the user, and a high level of security.
ISSN: 2166-0727
2023-07-31
Kamble, Samiksha, Bhikshapathi, Chenam Venkata, Ali, Syed Taqi.  2022.  A Study on Fuzzy Keywords Search Techniques and Incorporating Certificateless Cryptography. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1—6.
Cloud computing is preferred because of its numerous improvements, such as data security, low maintenance cost, unlimited storage capacity and consistent backups. However, legitimate users take advantage of cloud storage services for storing a considerable amount of sensitive data. After storing data on the cloud, data users pass on control over data to cloud administrators. Although for assuring data security, sensitive information needs to be encrypted before deploying it on the cloud server. In traditional searchable encryption, encrypted data can be searched using keywords on a cloud server without knowing data details, and users can retrieve certain specific files of interest after authentication. However, the results are only related to the exact matching keyword searches. This drawback affects system usability and efficiency, due to which existing encryption methods are unsuitable in cloud computing. To avoid the above problems, this study includes as follows: Firstly, we analyze all fuzzy keyword search techniques that are wildcard based, gram based and trie-traverse. Secondly, we briefly describe certificateless cryptography and suggest a certificateless searchable encryption scheme. Finally, this study gives easy access to developing a fuzzy keyword searchable system for a new researcher to combine the above two points. It provides easy access and efficient search results.
2022-12-09
Urien, Pascal.  2022.  Demonstrating Virtual IO For Internet Of Things Devices Secured By TLS Server In Secure Element. 2022 IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI). :111—112.
This demonstration presents an internet of things device (thermostat), whose security is enforced by a secure element (smartcard) running TLS server, and using Virtual Input/Ouput technology. The board comprises a Wi-Fi system on chip (SoC), a micro-controller managing sensor (temperature probe) and actuator (relay), and a javacard. All device messages are sent/received over TLS, and processed by the secure element. Some of them are exported to micro-controller in clear form, which returns a response, sent over TLS by the smartcard.
2023-06-09
Al-Amin, Mostafa, Khatun, Mirza Akhi, Nasir Uddin, Mohammed.  2022.  Development of Cyber Attack Model for Private Network. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :216—221.
Cyber Attack is the most challenging issue all over the world. Nowadays, Cyber-attacks are increasing on digital systems and organizations. Innovation and utilization of new digital technology, infrastructure, connectivity, and dependency on digital strategies are transforming day by day. The cyber threat scope has extended significantly. Currently, attackers are becoming more sophisticated, well-organized, and professional in generating malware programs in Python, C Programming, C++ Programming, Java, SQL, PHP, JavaScript, Ruby etc. Accurate attack modeling techniques provide cyber-attack planning, which can be applied quickly during a different ongoing cyber-attack. This paper aims to create a new cyber-attack model that will extend the existing model, which provides a better understanding of the network’s vulnerabilities.Moreover, It helps protect the company or private network infrastructure from future cyber-attacks. The final goal is to handle cyber-attacks efficacious manner using attack modeling techniques. Nowadays, many organizations, companies, authorities, industries, and individuals have faced cybercrime. To execute attacks using our model where honeypot, the firewall, DMZ and any other security are available in any environment.
2023-06-22
Barlas, Efe, Du, Xin, Davis, James C..  2022.  Exploiting Input Sanitization for Regex Denial of Service. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :883–895.
Web services use server-side input sanitization to guard against harmful input. Some web services publish their sanitization logic to make their client interface more usable, e.g., allowing clients to debug invalid requests locally. However, this usability practice poses a security risk. Specifically, services may share the regexes they use to sanitize input strings - and regex-based denial of service (ReDoS) is an emerging threat. Although prominent service outages caused by ReDoS have spurred interest in this topic, we know little about the degree to which live web services are vulnerable to ReDoS. In this paper, we conduct the first black-box study measuring the extent of ReDoS vulnerabilities in live web services. We apply the Consistent Sanitization Assumption: that client-side sanitization logic, including regexes, is consistent with the sanitization logic on the server-side. We identify a service's regex-based input sanitization in its HTML forms or its API, find vulnerable regexes among these regexes, craft ReDoS probes, and pinpoint vulnerabilities. We analyzed the HTML forms of 1,000 services and the APIs of 475 services. Of these, 355 services publish regexes; 17 services publish unsafe regexes; and 6 services are vulnerable to ReDoS through their APIs (6 domains; 15 subdomains). Both Microsoft and Amazon Web Services patched their web services as a result of our disclosure. Since these vulnerabilities were from API specifications, not HTML forms, we proposed a ReDoS defense for a popular API validation library, and our patch has been merged. To summarize: in client-visible sanitization logic, some web services advertise Re-DoS vulnerabilities in plain sight. Our results motivate short-term patches and long-term fundamental solutions. “Make measurable what cannot be measured.” -Galileo Galilei
ISSN: 1558-1225
2023-04-14
Rao Varre, Durga Naga Malleswara, Bayana, Jayanag.  2022.  A Secured Botnet Prevention Mechanism for HTTP Flooding Based DDoS Attack. 2022 3rd International Conference for Emerging Technology (INCET). :1–5.
HTTP flood DDoS (Distributed Denial of Service) attacks send illegitimate HTTP requests to the targeted site or server. These kinds of attacks corrupt the networks with the help of massive attacking nodes thus blocking incoming traffic. Computer network connected devices are the major source to distributed denial of service attacks (or) botnet attacks. The computer manufacturers rapidly increase the network devices as per the requirement increases in the different environmental needs. Generally the manufacturers cannot ship computer network products with high level security. Those network products require additional security to prevent the DDoS attacks. The present technology is filled with 4G that will impact DDoS attacks. The million DDoS attacks had experienced in every year by companies or individuals. DDoS attack in a network would lead to loss of assets, data and other resources. Purchasing the new equipment and repair of the DDoS attacked network is financially becomes high in the value. The prevention mechanisms like CAPTCHA are now outdated to the bots and which are solved easily by the advanced bots. In the proposed work a secured botnet prevention mechanism provides network security by prevent and mitigate the http flooding based DDoS attack and allow genuine incoming traffic to the application or server in a network environment with the help of integrating invisible challenge and Resource Request Rate algorithms to the application. It offers double security layer to handle malicious bots to prevent and mitigate.
2023-09-20
Salsabila, Hanifah, Mardhiyah, Syafira, Budiarto Hadiprakoso, Raden.  2022.  Flubot Malware Hybrid Analysis on Android Operating System. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS). :202—206.
The rising use of smartphones each year is matched by the development of the smartphone's operating system, Android. Due to the immense popularity of the Android operating system, many unauthorized users (in this case, the attackers) wish to exploit this vulnerability to get sensitive data from every Android user. The flubot malware assault, which happened in 2021 and targeted Android devices practically globally, is one of the attacks on Android smartphones. It was known at the time that the flubot virus stole information, particularly from banking applications installed on the victim's device. To prevent this from happening again, we research the signature and behavior of flubot malware. In this study, a hybrid analysis will be conducted on three samples of flubot malware that are available on the open-source Hatching Triage platform. Using the Android Virtual Device (AVD) as the primary environment for malware installation, the analysis was conducted with the Android Debug Bridge (ADB) and Burpsuite as supporting tools for dynamic analysis. During the static analysis, the Mobile Security Framework (MobSF) and the Bytecode Viewer were used to examine the source code of the three malware samples. Analysis of the flubot virus revealed that it extracts or drops dex files on the victim's device, where the file is the primary malware. The Flubot virus will clone the messaging application or Short Message Service (SMS) on the default device. Additionally, we discovered a form of flubot malware that operates as a Domain Generation Algorithm (DGA) and communicates with its Command and Control (C&C) server.
2023-04-28
López, Hiram H., Matthews, Gretchen L., Valvo, Daniel.  2022.  Secure MatDot codes: a secure, distributed matrix multiplication scheme. 2022 IEEE Information Theory Workshop (ITW). :149–154.
This paper presents secure MatDot codes, a family of evaluation codes that support secure distributed matrix multiplication via a careful selection of evaluation points that exploit the properties of the dual code. We show that the secure MatDot codes provide security against the user by using locally recoverable codes. These new codes complement the recently studied discrete Fourier transform codes for distributed matrix multiplication schemes that also provide security against the user. There are scenarios where the associated costs are the same for both families and instances where the secure MatDot codes offer a lower cost. In addition, the secure MatDot code provides an alternative way to handle the matrix multiplication by identifying the fastest servers in advance. In this way, it can determine a product using fewer servers, specified in advance, than the MatDot codes which achieve the optimal recovery threshold for distributed matrix multiplication schemes.
2023-06-22
Satyanarayana, D, Alasmi, Aisha Said.  2022.  Detection and Mitigation of DDOS based Attacks using Machine Learning Algorithm. 2022 International Conference on Cyber Resilience (ICCR). :1–5.

In recent decades, a Distributed Denial of Service (DDoS) attack is one of the most expensive attacks for business organizations. The DDoS is a form of cyber-attack that disrupts the operation of computer resources and networks. As technology advances, the styles and tools used in these attacks become more diverse. These attacks are increased in frequency, volume, and intensity, and they can quickly disrupt the victim, resulting in a significant financial loss. In this paper, it is described the significance of DDOS attacks and propose a new method for detecting and mitigating the DDOS attacks by analyzing the traffics coming to the server from the BOTNET in attacking system. The process of analyzing the requests coming from the BOTNET uses the Machine learning algorithm in the decision making. The simulation is carried out and the results analyze the DDOS attack.

2023-08-11
Wang, Jing, Wu, Fengheng, Zhang, Tingbo, Wu, Xiaohua.  2022.  DPP: Data Privacy-Preserving for Cloud Computing based on Homomorphic Encryption. 2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :29—32.
Cloud computing has been widely used because of its low price, high reliability, and generality of services. However, considering that cloud computing transactions between users and service providers are usually asynchronous, data privacy involving users and service providers may lead to a crisis of trust, which in turn hinders the expansion of cloud computing applications. In this paper, we propose DPP, a data privacy-preserving cloud computing scheme based on homomorphic encryption, which achieves correctness, compatibility, and security. DPP implements data privacy-preserving by introducing homomorphic encryption. To verify the security of DPP, we instantiate DPP based on the Paillier homomorphic encryption scheme and evaluate the performance. The experiment results show that the time-consuming of the key steps in the DPP scheme is reasonable and acceptable.
2022-04-01
Boucenna, Fateh, Nouali, Omar, Adi, Kamel, Kechid, Samir.  2021.  Access Pattern Hiding in Searchable Encryption. 2021 8th International Conference on Future Internet of Things and Cloud (FiCloud). :107—114.
Cloud computing is a technology that provides users with a large storage space and an enormous computing power. For privacy purpose, the sensitive data should be encrypted before being outsourced to the cloud. To search over the outsourced data, searchable encryption (SE) schemes have been proposed in the literature. An SE scheme should perform searches over encrypted data without causing any sensitive information leakage. To this end, a few security constraints were elaborated to guarantee the security of the SE schemes, namely, the keyword privacy, the trapdoor unlinkability, and the access pattern. The latter is very hard to be respected and most approaches fail to guarantee the access pattern constraint when performing a search. This constraint consists in hiding from the server the search result returned to the user. The non respect of this constraint may cause sensitive information leakage as demonstrated in the literature. To fix this security lack, we propose a method that allows to securely request and receive the needed documents from the server after performing a search. The proposed method that we call the access pattern hiding (APH) technique allows to respect the access pattern constraint. An experimental study is conducted to validate the APH technique.
2021-12-20
Park, Kyuchan, Ahn, Bohyun, Kim, Jinsan, Won, Dongjun, Noh, Youngtae, Choi, JinChun, Kim, Taesic.  2021.  An Advanced Persistent Threat (APT)-Style Cyberattack Testbed for Distributed Energy Resources (DER). 2021 IEEE Design Methodologies Conference (DMC). :1–5.
Advanced Persistent Threat (APT) is a professional stealthy threat actor who uses continuous and sophisticated attack techniques which have not been well mitigated by existing defense strategies. This paper proposes an APT-style cyber-attack tested for distributed energy resources (DER) in cyber-physical environments. The proposed security testbed consists of: 1) a real-time DER simulator; 2) a real-time cyber system using real network systems and a server; and 3) penetration testing tools generating APT-style attacks as cyber events. Moreover, this paper provides a cyber kill chain model for a DER system based on a latest MITRE’s cyber kill chain model to model possible attack stages. Several real cyber-attacks are created and their impacts in a DER system are provided to validate the feasibility of the proposed security testbed for DER systems.
2022-03-14
Sun, Xinyi, Gu, Shushi, Zhang, Qinyu, Zhang, Ning, Xiang, Wei.  2021.  Asynchronous Coded Caching Strategy With Nonuniform Demands for IoV Networks. 2021 IEEE/CIC International Conference on Communications in China (ICCC). :352—357.
The Internet of Vehicles (IoV) can offer safe and comfortable driving experiences with the cooperation communications between central servers and cache-enabled road side units (RSUs) as edge severs, which also can provide high-speed, high-quality and high-stability communication access for vehicle users (VUs). However, due to the huge popular traffic volume, the burden of backhaul link will be seriously enlarged, which will greatly degrade the service experience of the IoV. In order to alleviate the backhaul load of IoV network, in this paper, we propose an asynchronous coded caching strategy composed of two phases, i.e., content placement and asynchronous coded transmission. The asynchronous request and request deadline are closely considered to design our asynchronous coded transmission algorithm. Also, we derive the close-form expression of average backhaul load under the nonuniform demands of IoV users. Finally, we formulate an optimization problem of minimizing average backhaul load and obtain the optimized content placement vector. Simulation results verify the feasibility of our proposed strategy under the asynchronous situation.
2022-04-19
Sethia, Divyashikha, Sahu, Raj, Yadav, Sandeep, Kumar, Ram.  2021.  Attribute Revocation in ECC-Based CP-ABE Scheme for Lightweight Resource-Constrained Devices. 2021 International Conference on Communication, Control and Information Sciences (ICCISc). 1:1–6.
Ciphertext Policy Attribute-Based Encryption (CPABE) has gained popularity in the research area among the many proposed security models for providing fine-grained access control of data. Lightweight ECC-based CP-ABE schemes can provide feasible selective sharing from resource-constrained devices. However, the existing schemes lack support for a complete revocation mechanism at the user and attribute levels. We propose a novel scheme called Ecc Proxy based Scalable Attribute Revocation (EPSAR-CP-ABE) scheme. It extends an existing ECC-based CP-ABE scheme for lightweight IoT and smart-card devices to implement scalable attribute revocation. The scheme does not require re-distribution of secret keys and re-encryption of ciphertext. It uses a proxy server to furnish a proxy component for decryption. The dependency of the proposed scheme is minimal on the proxy server compared to the other related schemes. The storage and computational overhead due to the attribute revocation feature are negligible. Hence, the proposed EPSAR-CP-ABE scheme can be deployed practically for resource-constrained devices.
2022-05-09
Huang, Liangqun, Xu, Lei, Zhu, Liehuang, Gai, Keke.  2021.  A Blockchain-Assisted Privacy-Preserving Cloud Computing Method with Multiple Keys. 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud). :19–25.
How to analyze users' data without compromising individual privacy is an important issue in cloud computing. In order to protect privacy and enable the cloud to perform computing, users can apply homomorphic encryption schemes to their data. Most of existing homomorphic encryption-based cloud computing methods require that users' data are encrypted with the same key. While in practice, different users may prefer to use different keys. In this paper, we propose a privacy-preserving cloud computing method which adopts a double-trapdoor homomorphic encryption scheme to deal with the multi-key issue. The proposed method uses two cloud servers to analyze users' encrypted data. And we propose to use blockchain to monitor the information exchanged between the servers. Security analysis shows that the introduction of blockchain can help to prevent the two servers from colluding with each other, hence data privacy is further enhanced. And we conduct simulations to demonstrate the feasibility of the propose method.
2022-03-08
Melati, Seshariana Rahma, Yovita, Leanna Vidya, Mayasari, Ratna.  2021.  Caching Performance of Named Data Networking with NDNS. 2021 International Conference on Information Networking (ICOIN). :261–266.
Named Data Networking, a future internet network architecture design that can change the network's perspective from previously host-centric to data-centric. It can reduce the network load, especially on the server part, and can provide advantages in multicast cases or re-sending of content data to users due to transmission errors. In NDN, interest messages are sent to the router, and if they are not immediately found, they will continue to be forwarded, resulting in a large load. NDNS or a DNS-Like Name Service for NDN is needed to know exactly where the content is to improve system performance. NDNS is a database that provides information about the zone location of the data contained in the network. In this study, a simulation was conducted to test the NDNS mechanism on the NDN network to support caching on the NDN network by testing various topologies with changes in the size of the content store and the number of nodes used. NDNS is outperform compared to NDN without NDNS for cache hit ratio and load parameters.
2022-09-16
Ageed, Zainab Salih, Zeebaree, Subhi R. M., Sadeeq, Mohammed A. M., Ibrahim, Rowaida Khalil, Shukur, Hanan M., Alkhayyat, Ahmed.  2021.  Comprehensive Study of Moving from Grid and Cloud Computing Through Fog and Edge Computing towards Dew Computing. 2021 4th International Iraqi Conference on Engineering Technology and Their Applications (IICETA). :68—74.
Dew Computing (DC) is a comparatively modern field with a wide range of applications. By examining how technological advances such as fog, edge and Dew computing, and distributed intelligence force us to reconsider traditional Cloud Computing (CC) to serve the Internet of Things. A new dew estimation theory is presented in this article. The revised definition is as follows: DC is a software and hardware cloud-based company. On-premises servers provide autonomy and collaborate with cloud networks. Dew Calculation aims to enhance the capabilities of on-premises and cloud-based applications. These categories can result in the development of new applications. In the world, there has been rapid growth in Information and Communication Technology (ICT), starting with Grid Computing (GC), CC, Fog Computing (FC), and the latest Edge Computing (EC) technology. DC technologies, infrastructure, and applications are described. We’ll go through the newest developments in fog networking, QoE, cloud at the edge, platforms, security, and privacy. The dew-cloud architecture is an option concerning the current client-server architecture, where two servers are located at opposite ends. In the absence of an Internet connection, a dew server helps users browse and track their details. Data are primarily stored as a local copy on the dew server that starts the Internet and is synchronized with the cloud master copy. The local dew pages, a local online version of the current website, can be browsed, read, written, or added to the users. Mapping between different Local Dew sites has been made possible using the dew domain name scheme and dew domain redirection.
G.A, Senthil, Prabha, R., Pomalar, A., Jancy, P. Leela, Rinthya, M..  2021.  Convergence of Cloud and Fog Computing for Security Enhancement. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1—6.
Cloud computing is a modern type of service that provides each consumer with a large-scale computing tool. Different cyber-attacks can potentially target cloud computing systems, as most cloud computing systems offer services to so many people who are not known to be trustworthy. Therefore, to protect that Virtual Machine from threats, a cloud computing system must incorporate some security monitoring framework. There is a tradeoff between the security level of the security system and the performance of the system in this scenario. If a strong security is required then a stronger security service using more rules or patterns should be incorporated and then in proportion to the strength of security, it needs much more computing resources. So the amount of resources allocated to customers is decreasing so this research work will introduce a new way of security system in cloud environments to the VM in this research. The main point of Fog computing is to part of the cloud server's work in the ongoing study tells the step-by-step cloud server to change gigantic information measurement because the endeavor apps are relocated to the cloud to keep the framework cost. So the cloud server is devouring and changing huge measures of information step by step so it is rented to keep up the problem and additionally get terrible reactions in a horrible device environment. Cloud computing and Fog computing approaches were combined in this paper to review data movement and safe information about MDHC.
2022-01-10
Shirmarz, Alireza, Ghaffari, Ali, Mohammadi, Ramin, Akleylek, Sedat.  2021.  DDOS Attack Detection Accuracy Improvement in Software Defined Network (SDN) Using Ensemble Classification. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :111–115.
Nowadays, Denial of Service (DOS) is a significant cyberattack that can happen on the Internet. This attack can be taken place with more than one attacker that in this case called Distributed Denial of Service (DDOS). The attackers endeavour to make the resources (server & bandwidth) unavailable to legitimate traffic by overwhelming resources with malicious traffic. An appropriate security module is needed to discriminate the malicious flows with high accuracy to prevent the failure resulting from a DDOS attack. In this paper, a DDoS attack discriminator will be designed for Software Defined Network (SDN) architecture so that it can be deployed in the POX controller. The simulation results present that the proposed model can achieve an accuracy of about 99.4%which shows an outstanding percentage of improvement compared with Decision Tree (DT), K-Nearest Neighbour (KNN), Support Vector Machine (SVM) approaches.