Biblio
In this article, the writers suggested a scheme for analyzing the optimum crop cultivation based on Fuzzy Logic Network (Implementation of Fuzzy Logic Control in Predictive Analysis and Real Time Monitoring of Optimum Crop Cultivation) knowledge. The Fuzzy system is Fuzzy Logic's set. By using the soil, temperature, sunshine, precipitation and altitude value, the scheme can calculate the output of a certain crop. By using this scheme, the writers hope farmers can boost f arm output. This, thus will have an enormous effect on alleviating economical deficiency, strengthening rate of employment, the improvement of human resources and food security.
In the era of mass agriculture to keep up with the increasing demand for food production, advanced monitoring systems are required in order to handle several challenges such as perishable products, food waste, unpredictable supply variations and stringent food safety and sustainability requirements. The evolution of Internet of Things have provided means for collecting, processing, and communicating data associated with agricultural processes. This have opened several opportunities to sustain, improve productivity and reduce waste in every step in the food supply chain system. On the hand, this resulted in several new challenges, such as, the security of the data, recording and representation of data, providing real time control, reliability of the system, and dealing with big data. This paper proposes an architecture for security of big data in the agricultural supply chain management system. This can help in reducing food waste, increasing the reliability of the supply chain, and enhance the performance of the food supply chain system.
The potential risk of agricultural product supply chain is huge because of the complex attributes specific to it. Actually the safety incidents of edible agricultural product emerge frequently in recent years, which expose the fragility of the agricultural product supply chain. In this paper the possible risk factors in agricultural product supply chain is analyzed in detail, the agricultural product supply chain risk evaluation index system and evaluation model are established, and an empirical analysis is made using BP neural network method. The results show that the risk ranking of the simulated evaluation is consistent with the target value ranking, and the risk assessment model has a good generalization and extension ability, and the model has a good reference value for preventing agricultural product supply chain risk.
Small Unmanned Aircraft Systems (sUAS) are already revolutionizing agricultural and environmental monitoring through the acquisition of high-resolution multi-spectral imagery on-demand. However, in order to accurately understand various complex environmental and agricultural processes, it is often necessary to collect physical samples of pests, pathogens, and insects from the field for ex-situ analysis. In this paper, we describe a sUAS for autonomous deployment and recovery of a novel environmental sensor probe. We present the UAS software and hardware stack, and a probe design that can be adapted to collect a variety of environmental samples and can be transported autonomously for off-site analysis. Our team participated in an NSF-sponsored student unmanned aerial vehicle (UAV) challenge, where we used our sUAS to deploy and recover a scale-model mosquito trap outdoors. Results from indoor and field trials are presented, and the challenges experienced in detecting and docking with the probe in outdoor conditions are discussed.
In this paper, machine learning attacks are performed on a novel hybrid delay based Arbiter Ring Oscillator PUF (AROPUF). The AROPUF exhibits improved results when compared to traditional Arbiter Physical Unclonable Function (APUF). The challenge-response pairs (CRPs) from both PUFs are fed to the multilayered perceptron model (MLP) with one hidden layer. The results show that the CRPs generated from the proposed AROPUF has more training and prediction errors when compared to the APUF, thus making it more difficult for the adversary to predict the CRPs.
Climate change has affected the cultivation in all countries with extreme drought, flooding, higher temperature, and changes in the season thus leaving behind the uncontrolled production. Consequently, the smart farm has become part of the crucial trend that is needed for application in certain farm areas. The aims of smart farm are to control and to enhance food production and productivity, and to increase farmers' profits. The advantages in applying smart farm will improve the quality of production, supporting the farm workers, and better utilization of resources. This study aims to explore the research trends and identify research clusters on smart farm using bibliometric analysis that has supported farming to improve the quality of farm production. The bibliometric analysis is the method to explore the relationship of the articles from a co-citation network of the articles and then science mapping is used to identify clusters in the relationship. This study examines the selected research articles in the smart farm field. The area of research in smart farm is categorized into two clusters that are soil carbon emission from farming activity, food security and farm management by using a VOSviewer tool with keywords related to research articles on smart farm, agriculture, supply chain, knowledge management, traceability, and product lifecycle management from Web of Science (WOS) and Scopus online database. The major cluster of smart farm research is the soil carbon emission from farming activity which impacts on climate change that affects food production and productivity. The contribution is to identify the trends on smart farm to develop research in the future by means of bibliometric analysis.