Biblio

Filters: Author is Jia, Y.  [Clear All Filters]
2019-09-04
Xiong, M., Li, A., Xie, Z., Jia, Y..  2018.  A Practical Approach to Answer Extraction for Constructing QA Solution. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :398–404.
Question Answering system(QA) plays an increasingly important role in the Internet age. The proportion of using the QA is getting higher and higher for the Internet users to obtain knowledge and solve problems, especially in the modern agricultural filed. However, the answer quality in QA varies widely due to the agricultural expert's level. Answer quality assessment is important. Due to the lexical gap between questions and answers, the existing approaches are not quite satisfactory. A practical approach RCAS is proposed to rank the candidate answers, which utilizes the support sets to reduce the impact of lexical gap between questions and answers. Firstly, Similar questions are retrieved and support sets are produced with their high-quality answers. Based on the assumption that high quality answers would also have intrinsic similarity, the quality of candidate answers are then evaluated through their distance from the support sets. Secondly, Different from the existing approaches, previous knowledge from similar question-answer pairs are used to bridge the straight lexical and semantic gaps between questions and answers. Experiments are implemented on approximately 0.15 million question-answer pairs about agriculture, dietetics and food from Yahoo! Answers. The results show that our approach can rank the candidate answers more precisely.
2019-03-04
Zhu, Z., Jiang, R., Jia, Y., Xu, J., Li, A..  2018.  Cyber Security Knowledge Graph Based Cyber Attack Attribution Framework for Space-ground Integration Information Network. 2018 IEEE 18th International Conference on Communication Technology (ICCT). :870–874.
Comparing with the traditional Internet, the space-ground integration information network has more complicated topology, wider coverage area and is more difficult to find the source of attacks. In this paper, a cyber attack attribution framework is proposed to trace the attack source in space-ground integration information network. First, we constructs a cyber security knowledge graph for space-ground integration information network. An automated attributing framework for cyber-attack is proposed. It attributes the source of the attack by querying the cyber security knowledge graph we constructed. Experiments show that the proposed framework can attribute network attacks simply, effectively, and automatically.
2018-02-21
Zhou, G., Feng, Y., Bo, R., Chien, L., Zhang, X., Lang, Y., Jia, Y., Chen, Z..  2017.  GPU-Accelerated Batch-ACPF Solution for N-1 Static Security Analysis. IEEE Transactions on Smart Grid. 8:1406–1416.

Graphics processing unit (GPU) has been applied successfully in many scientific computing realms due to its superior performances on float-pointing calculation and memory bandwidth, and has great potential in power system applications. The N-1 static security analysis (SSA) appears to be a candidate application in which massive alternating current power flow (ACPF) problems need to be solved. However, when applying existing GPU-accelerated algorithms to solve N-1 SSA problem, the degree of parallelism is limited because existing researches have been devoted to accelerating the solution of a single ACPF. This paper therefore proposes a GPU-accelerated solution that creates an additional layer of parallelism among batch ACPFs and consequently achieves a much higher level of overall parallelism. First, this paper establishes two basic principles for determining well-designed GPU algorithms, through which the limitation of GPU-accelerated sequential-ACPF solution is demonstrated. Next, being the first of its kind, this paper proposes a novel GPU-accelerated batch-QR solver, which packages massive number of QR tasks to formulate a new larger-scale problem and then achieves higher level of parallelism and better coalesced memory accesses. To further improve the efficiency of solving SSA, a GPU-accelerated batch-Jacobian-Matrix generating and contingency screening is developed and carefully optimized. Lastly, the complete process of the proposed GPU-accelerated batch-ACPF solution for SSA is presented. Case studies on an 8503-bus system show dramatic computation time reduction is achieved compared with all reported existing GPU-accelerated methods. In comparison to UMFPACK-library-based single-CPU counterpart using Intel Xeon E5-2620, the proposed GPU-accelerated SSA framework using NVIDIA K20C achieves up to 57.6 times speedup. It can even achieve four times speedup when compared to one of the fastest multi-core CPU parallel computing solution using KLU library. The prop- sed batch-solving method is practically very promising and lays a critical foundation for many other power system applications that need to deal with massive subtasks, such as Monte-Carlo simulation and probabilistic power flow.