Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2022-02-07
Wang, Shuwei, Wang, Qiuyun, Jiang, Zhengwei, Wang, Xuren, Jing, Rongqi.  2021.  A Weak Coupling of Semi-Supervised Learning with Generative Adversarial Networks for Malware Classification. 2020 25th International Conference on Pattern Recognition (ICPR). :3775–3782.
Malware classification helps to understand its purpose and is also an important part of attack detection. And it is also an important part of discovering attacks. Due to continuous innovation and development of artificial intelligence, it is a trend to combine deep learning with malware classification. In this paper, we propose an improved malware image rescaling algorithm (IMIR) based on local mean algorithm. Its main goal of IMIR is to reduce the loss of information from samples during the process of converting binary files to image files. Therefore, we construct a neural network structure based on VGG model, which is suitable for image classification. In the real world, a mass of malware family labels are inaccurate or lacking. To deal with this situation, we propose a novel method to train the deep neural network by Semi-supervised Generative Adversarial Network (SGAN), which only needs a small amount of malware that have accurate labels about families. By integrating SGAN with weak coupling, we can retain the weak links of supervised part and unsupervised part of SGAN. It improves the accuracy of malware classification by making classifiers more independent of discriminators. The results of experimental demonstrate that our model achieves exhibiting favorable performance. The recalls of each family in our data set are all higher than 93.75%.
2022-04-25
Nguyen, Huy Hoang, Ta, Thi Nhung, Nguyen, Ngoc Cuong, Bui, Van Truong, Pham, Hung Manh, Nguyen, Duc Minh.  2021.  YOLO Based Real-Time Human Detection for Smart Video Surveillance at the Edge. 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE). :439–444.
Recently, smart video surveillance at the edge has become a trend in developing security applications since edge computing enables more image processing tasks to be implemented on the decentralised network note of the surveillance system. As a result, many security applications such as behaviour recognition and prediction, employee safety, perimeter intrusion detection and vandalism deterrence can minimise their latency or even process in real-time when the camera network system is extended to a larger degree. Technically, human detection is a key step in the implementation of these applications. With the advantage of high detection rates, deep learning methods have been widely employed on edge devices in order to detect human objects. However, due to their high computation costs, it is challenging to apply these methods on resource limited edge devices for real-time applications. Inspired by the You Only Look Once (YOLO), residual learning and Spatial Pyramid Pooling (SPP), a novel form of real-time human detection is presented in this paper. Our approach focuses on designing a network structure so that the developed model can achieve a good trade-off between accuracy and processing time. Experimental results show that our trained model can process 2 FPS on Raspberry PI 3B and detect humans with accuracies of 95.05 % and 96.81 % when tested respectively on INRIA and PENN FUDAN datasets. On the human COCO test dataset, our trained model outperforms the performance of the Tiny-YOLO versions. Additionally, compare to the SSD based L-CNN method, our algorithm achieves better accuracy than the other method.
2021-12-22
Malhotra, Diksha, Srivastava, Shubham, Saini, Poonam, Singh, Awadhesh Kumar.  2021.  Blockchain Based Audit Trailing of XAI Decisions: Storing on IPFS and Ethereum Blockchain. 2021 International Conference on COMmunication Systems NETworkS (COMSNETS). :1–5.
Explainable Artificial Intelligence (XAI) generates explanations which are used by regulators to audit the responsibility in case of any catastrophic failure. These explanations are currently stored in centralized systems. However, due to lack of security and traceability in centralized systems, the respective owner may temper the explanations for his convenience in order to avoid any penalty. Nowadays, Blockchain has emerged as one of the promising technologies that might overcome the security limitations. Hence, in this paper, we propose a novel Blockchain based framework for proof-of-authenticity pertaining to XAI decisions. The framework stores the explanations in InterPlanetary File System (IPFS) due to storage limitations of Ethereum Blockchain. Further, a Smart Contract is designed and deployed in order to supervise the storage and retrieval of explanations from Ethereum Blockchain. Furthermore, to induce cryptographic security in the network, an explanation's hash is calculated and stored in Blockchain too. Lastly, we perform the cost and security analysis of our proposed system.
2021-12-21
Grube, Tim, Egert, Rolf, Mühlhäuser, Max, Daubert, Jörg.  2021.  The Cost of Path Information: Routing in Anonymous Communication. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–6.
Anonymity is an essential asset for a variety of communication systems, like humans' communication, the internet of things, and sensor networks. Establishing and maintaining such communication systems requires the exchange of information about their participants (called subjects). However, protecting anonymity reduces the availability of subject information, as these can be leveraged to break anonymity. Additionally, established techniques for providing anonymity often reduce the efficiency of communication networks. In this paper, we model four mechanisms to share routing information and discuss them with respect to their influence on anonymity and efficiency. While there is no ``one fits all'' solution, there are suitable trade-offs to establish routing information complying with the technical capabilities of the subjects. Distributed solutions like decentralized lookup tables reduce routing information in messages at the cost of local memory consumption; other mechanisms like multi-layer encrypted path information come with higher communication overhead but reduce memory consumption for each subject.
2022-04-19
Cheng, Quan, Yang, Yin, Gui, Xin.  2021.  Disturbance Signal Recognition Using Convolutional Neural Network for DAS System. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :278–281.

Distributed acoustic sensing (DAS) systems based on fiber brag grating (FBG) have been widely used for distributed temperature and strain sensing over the past years, and function well in perimeter security monitoring and structural health monitoring. However, with relevant algorithms functioning with low accuracy, the DAS system presently has trouble in signal recognition, which puts forward a higher requirement on a high-precision identification method. In this paper, we propose an improved recognition method based on relative fundamental signal processing methods and convolutional neural network (CNN) to construct a mathematical model of disturbance FBG signal recognition. Firstly, we apply short-time energy (STE) to extract original disturbance signals. Secondly, we adopt short-time Fourier transform (STFT) to divide a longer time signal into short segments. Finally, we employ a CNN model, which has already been trained to recognize disturbance signals. Experimental results conducted in the real environments show that our proposed algorithm can obtain accuracy over 96.5%.

2022-05-05
Huong, Truong Thu, Bac, Ta Phuong, Long, Dao Minh, Thang, Bui Doan, Luong, Tran Duc, Binh, Nguyen Thanh.  2021.  An Efficient Low Complexity Edge-Cloud Framework for Security in IoT Networks. 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE). :533—539.

Internet of Things (IoT) and its applications are becoming commonplace with more devices, but always at risk of network security. It is therefore crucial for an IoT network design to identify attackers accurately, quickly and promptly. Many solutions have been proposed, mainly concerning secure IoT architectures and classification algorithms, but none of them have paid enough attention to reducing the complexity. Our proposal in this paper is an edge-cloud architecture that fulfills the detection task right at the edge layer, near the source of the attacks for quick response, versatility, as well as reducing the cloud's workload. We also propose a multi-attack detection mechanism called LCHA (Low-Complexity detection solution with High Accuracy) , which has low complexity for deployment at the edge zone while still maintaining high accuracy. The performance of our proposed mechanism is compared with that of other machine learning and deep learning methods using the most updated BoT-IoT data set. The results show that LCHA outperforms other algorithms such as NN, CNN, RNN, KNN, SVM, KNN, RF and Decision Tree in terms of accuracy and NN in terms of complexity.

2022-04-26
Makarov, Artyom, Varfolomeev, Alexander A..  2021.  Extended Classification of Signature-only Signature Models. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :2385–2389.

In this paper, we extend the existing classification of signature models by Cao. To do so, we present a new signature classification framework and migrate the original classification to build an easily extendable faceted signature classification. We propose 20 new properties, 7 property families, and 1 signature classification type. With our classification, theoretically, up to 11 541 420 signature classes can be built, which should cover almost all existing signature schemes.

Qin, Desong, Zhang, Zhenjiang.  2021.  A Frequency Estimation Algorithm under Local Differential Privacy. 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1–5.

With the rapid development of 5G, the Internet of Things (IoT) and edge computing technologies dramatically improve smart industries' efficiency, such as healthcare, smart agriculture, and smart city. IoT is a data-driven system in which many smart devices generate and collect a massive amount of user privacy data, which may be used to improve users' efficiency. However, these data tend to leak personal privacy when people send it to the Internet. Differential privacy (DP) provides a method for measuring privacy protection and a more flexible privacy protection algorithm. In this paper, we study an estimation problem and propose a new frequency estimation algorithm named MFEA that redesigns the publish process. The algorithm maps a finite data set to an integer range through a hash function, then initializes the data vector according to the mapped value and adds noise through the randomized response. The frequency of all interference data is estimated with maximum likelihood. Compared with the current traditional frequency estimation, our approach achieves better algorithm complexity and error control while satisfying differential privacy protection (LDP).

2021-12-20
Mahboob, Jamal, Coffman, Joel.  2021.  A Kubernetes CI/CD Pipeline with Asylo as a Trusted Execution Environment Abstraction Framework. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0529–0535.
Modern commercial software development organizations frequently prescribe to a development and deployment pattern for releases known as continuous integration / continuous deployment (CI/CD). Kubernetes, a cluster-based distributed application platform, is often used to implement this pattern. While the abstract concept is fairly well understood, CI/CD implementations vary widely. Resources are scattered across on-premise and cloud-based services, and systems may not be fully automated. Additionally, while a development pipeline may aim to ensure the security of the finished artifact, said artifact may not be protected from outside observers or cloud providers during execution. This paper describes a complete CI/CD pipeline running on Kubernetes that addresses four gaps in existing implementations. First, the pipeline supports strong separation-of-duties, partitioning development, security, and operations (i.e., DevSecOps) roles. Second, automation reduces the need for a human interface. Third, resources are scoped to a Kubernetes cluster for portability across environments (e.g., public cloud providers). Fourth, deployment artifacts are secured with Asylo, a development framework for trusted execution environments (TEEs).
2022-04-13
Yaegashi, Ryo, Hisano, Daisuke, Nakayama, Yu.  2021.  Light-Weight DDoS Mitigation at Network Edge with Limited Resources. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1—6.

The Internet of Things (IoT) has been growing rapidly in recent years. With the appearance of 5G, it is expected to become even more indispensable to people's lives. In accordance with the increase of Distributed Denial-of-Service (DDoS) attacks from IoT devices, DDoS defense has become a hot research topic. DDoS detection mechanisms executed on routers and SDN environments have been intensely studied. However, these methods have the disadvantage of requiring the cost and performance of the devices. In addition, there is no existing DDoS mitigation algorithm on the network edge that can be performed with the low-cost and low-performance equipment. Therefore, this paper proposes a light-weight DDoS mitigation scheme at the network edge using limited resources of inexpensive devices such as home gateways. The goal of the proposed scheme is to detect and mitigate flooding attacks. It utilizes unused queue resources to detect malicious flows by random shuffling of queue allocation and discard the packets of the detected flows. The performance of the proposed scheme was confirmed via theoretical analysis and computer simulation. The simulation results match the theoretical results and the proposed algorithm can efficiently detect malicious flows using limited resources.

2022-03-23
Jena, Prasanta Kumar, Ghosh, Subhojit, Koley, Ebha.  2021.  An Optimal PMU Placement Scheme for Detection of Malicious Attacks in Smart Grid. 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE). :1—6.

State estimation is the core operation performed within the energy management system (EMS) of smart grid. Hence, the reliability and integrity of a smart grid relies heavily on the performance of sensor measurement dependent state estimation process. The increasing penetration of cyber control into the smart grid operations has raised severe concern for executing a secured state estimation process. The limitation with regard to monitoring large number of sensors allows an intruder to manipulate sensor information, as one of the soft targets for disrupting power system operations. Phasor measurement unit (PMU) can be adopted as an alternative to immunize the state estimation from corrupted conventional sensor measurements. However, the high installation cost of PMUs restricts its installation throughout the network. In this paper a graphical approach is proposed to identify minimum PMU placement locations, so as to detect any intrusion of malicious activity within the smart grid. The high speed synchronized PMU information ensures processing of secured set of sensor measurements to the control center. The results of PMU information based linear state estimation is compared with the conventional non-linear state estimation to detect any attack within the system. The effectiveness of the proposed scheme has been validated on IEEE 14 bus test system.

2021-12-21
Xiaojian, Zhang, Liandong, Chen, Jie, Fan, Xiangqun, Wang, Qi, Wang.  2021.  Power IoT Security Protection Architecture Based on Zero Trust Framework. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :166–170.
The construction of the power Internet of Things has led various terminals to access the corporate network on a large scale. The internal and external business interaction and data exchange are more extensive. The current security protection system is based on border isolation protection. This is difficult to meet the needs of the power Internet of Things connection and open shared services. This paper studies the application scheme of the ``zero trust'' typical business scenario of the power Internet of Things with ``Continuous Identity Authentication and Dynamic Access Control'' as the core, and designs the power internet security protection architecture based on zero trust.
2021-12-22
Ortega, Alfonso, Fierrez, Julian, Morales, Aythami, Wang, Zilong, Ribeiro, Tony.  2021.  Symbolic AI for XAI: Evaluating LFIT Inductive Programming for Fair and Explainable Automatic Recruitment. 2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW). :78–87.
Machine learning methods are growing in relevance for biometrics and personal information processing in domains such as forensics, e-health, recruitment, and e-learning. In these domains, white-box (human-readable) explanations of systems built on machine learning methods can become crucial. Inductive Logic Programming (ILP) is a subfield of symbolic AI aimed to automatically learn declarative theories about the process of data. Learning from Interpretation Transition (LFIT) is an ILP technique that can learn a propositional logic theory equivalent to a given blackbox system (under certain conditions). The present work takes a first step to a general methodology to incorporate accurate declarative explanations to classic machine learning by checking the viability of LFIT in a specific AI application scenario: fair recruitment based on an automatic tool generated with machine learning methods for ranking Curricula Vitae that incorporates soft biometric information (gender and ethnicity). We show the expressiveness of LFIT for this specific problem and propose a scheme that can be applicable to other domains.
2021-12-20
Masood, Arshad, Masood, Ammar.  2021.  A Taxonomy of Insider Threat in Isolated (Air-Gapped) Computer Networks. 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST). :678–685.
Mitigation of dangers posed by authorized and trusted insiders to the organization is a challenging Cyber Security issue. Despite state-of-the-art cyber security practices, malicious insiders present serious threat for the enterprises due to their wider access to organizational resources (Physical, Cyber) and good knowledge of internal processes with potential vulnerabilities. The issue becomes particularly important for isolated (air-gapped) computer networks, normally used by security sensitive organizations such as government, research and development, critical infrastructure (e.g. power, nuclear), finance, and military. Such facilities are difficult to compromise from outside; however, are quite much prone to insider threats. Although many insider threat taxonomies exist for generic computer networks; yet, the existing taxonomies do not effectively address the issue of Insider Threat in isolated computer networks. Thereby, we have developed an insider threat taxonomy specific to isolated computer networks focusing on actions performed by the trusted individual(s), Our methodology is to identify limitations in existing taxonomies and map real world insider threat cases on proposed taxonomy. We argue that for successful attack in an isolated computer network, the attack must manifest in both Physical and Cyber world. The proposed taxonomy systematically classifies different aspects of the problem into separate dimensions and branches out these dimensions into further sub-categories without loss of general applicability. Our multi-dimensional hierarchical taxonomy provides comprehensive treatment of the insider threat problem in isolated computer networks; thus, improving situational awareness of the security analyst and helps in determining proper countermeasures against perceived threats. Although many insider threat taxonomies exist for generic computer networks; yet, the existing taxonomies do not effectively address the issue of Insider Threat in isolated computer networks. Thereby, we have developed an insider threat taxonomy specific to isolated computer networks focusing on actions performed by the trusted individual(s), Our methodology is to identify limitations in existing taxonomies and map real world insider threat cases on proposed taxonomy. We argue that for successful attack in an isolated computer network, the attack must manifest in both Physical and Cyber world. The proposed taxonomy systematically classifies different aspects of the problem into separate dimensions and branches out these dimensions into further sub-categories without loss of general applicability. Our multi-dimensional hierarchical taxonomy provides comprehensive treatment of the insider threat problem in isolated computer networks; thus, improving situational awareness of the security analyst and helps in determining proper countermeasures against perceived threats. The proposed taxonomy systematically classifies different aspects of the problem into separate dimensions and branches out these dimensions into further sub-categories without loss of general applicability. Our multi-dimensional hierarchical taxonomy provides comprehensive treatment of the insider threat problem in isolated computer networks; thus, improving situational awareness of the security analyst and helps in determining proper countermeasures against perceived threats.
2022-01-10
Wang, Wenhui, Han, Longxi, Ge, Guangkai, Yang, Zhenghao.  2021.  An Algorithm of Optimal Penetration Path Generation under Unknown Attacks of Electric Power WEB System Based on Knowledge Graph. 2021 2nd International Conference on Computer Communication and Network Security (CCNS). :141–144.
Aiming at the disadvantages of traditional methods such as low penetration path generation efficiency and low attack type recognition accuracy, an optimal penetration path generation algorithm based on the knowledge map power WEB system unknown attack is proposed. First, establish a minimum penetration path test model. And use the model to test the unknown attack of the penetration path under the power WEB system. Then, the ontology of the knowledge graph is designed. Finally, the design of the optimal penetration path generation algorithm based on the knowledge graph is completed. Experimental results show that the algorithm improves the efficiency of optimal penetration path generation, overcomes the shortcomings of traditional methods that can only describe known attacks, and can effectively guarantee the security of power WEB systems.
2022-05-05
Liang, Haolan, Ye, Chunxiao, Zhou, Yuangao, Yang, Hongzhao.  2021.  Anomaly Detection Based on Edge Computing Framework for AMI. 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT). :385—390.
Aiming at the cyber security problem of the advanced metering infrastructure(AMI), an anomaly detection method based on edge computing framework for the AMI is proposed. Due to the characteristics of the edge node of data concentrator, the data concentrator has the capability of computing a large amount of data. In this paper, distributing the intrusion detection model on the edge node data concentrator of the AMI instead of the metering center, meanwhile, two-way communication of distributed local model parameters replaces a large amount of data transmission. The proposed method avoids the risk of privacy leakage during the communication of data in AMI, and it greatly reduces communication delay and computational time. In this paper, KDDCUP99 datasets is used to verify the effectiveness of the method. The results show that compared with Deep Convolutional Neural Network (DCNN), the detection accuracy of the proposed method reach 99.05%, and false detection rate only gets 0.74%, and the results indicts the proposed method ensures a high detection performance with less communication rounds, it also reduces computational consumption.
2022-09-16
Almseidin, Mohammad, Al-Sawwa, Jamil, Alkasassbeh, Mouhammd.  2021.  Anomaly-based Intrusion Detection System Using Fuzzy Logic. 2021 International Conference on Information Technology (ICIT). :290—295.
Recently, the Distributed Denial of Service (DDOS) attacks has been used for different aspects to denial the number of services for the end-users. Therefore, there is an urgent need to design an effective detection method against this type of attack. A fuzzy inference system offers the results in a more readable and understandable form. This paper introduces an anomaly-based Intrusion Detection (IDS) system using fuzzy logic. The fuzzy logic inference system implemented as a detection method for Distributed Denial of Service (DDOS) attacks. The suggested method was applied to an open-source DDOS dataset. Experimental results show that the anomaly-based Intrusion Detection system using fuzzy logic obtained the best result by utilizing the InfoGain features selection method besides the fuzzy inference system, the results were 91.1% for the true-positive rate and 0.006% for the false-positive rate.
2022-01-10
Paul, Avishek, Islam, Md Rabiul.  2021.  An Artificial Neural Network Based Anomaly Detection Method in CAN Bus Messages in Vehicles. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). :1–5.

Controller Area Network is the bus standard that works as a central system inside the vehicles for communicating in-vehicle messages. Despite having many advantages, attackers may hack into a car system through CAN bus, take control of it and cause serious damage. For, CAN bus lacks security services like authentication, encryption etc. Therefore, an anomaly detection system must be integrated with CAN bus in vehicles. In this paper, we proposed an Artificial Neural Network based anomaly detection method to identify illicit messages in CAN bus. We trained our model with two types of attacks so that it can efficiently identify the attacks. When tested, the proposed algorithm showed high performance in detecting Denial of Service attacks (with accuracy 100%) and Fuzzy attacks (with accuracy 99.98%).

2022-09-09
Teichel, Kristof, Lehtonen, Tapio, Wallin, Anders.  2021.  Assessing Time Transfer Methods for Accuracy and Reliability : Navigating the Time Transfer Trade-off Triangle. 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). :1—4.
We present a collected overview on how to assess both the accuracy and reliability levels and relate them to the required effort, for different digital methods of synchronizing clocks. The presented process is intended for end users who require time synchronization but are not certain about how to judge at least one of the aspects. It can not only be used on existing technologies but should also be transferable to many future approaches. We further relate this approach to several examples. We discuss in detail the approach of medium-range White Rabbit connections over dedicated fibers, a method that occupies an extreme corner in the evaluation, where the effort is exceedingly high, but also yields excellent accuracy and significant reliability.
2022-04-01
Sedano, Wadlkur Kurniawan, Salman, Muhammad.  2021.  Auditing Linux Operating System with Center for Internet Security (CIS) Standard. 2021 International Conference on Information Technology (ICIT). :466—471.
Linux is one of the operating systems to support the increasingly rapid development of internet technology. Apart from the speed of the process, security also needs to be considered. Center for Internet Security (CIS) Benchmark is an example of a security standard. This study implements the CIS Benchmark using the Chef Inspec application. This research focuses on building a tool to perform security audits on the Ubuntu 20.04 operating system. 232 controls on CIS Benchmark were successfully implemented using Chef Inspec application. The results of this study were 87 controls succeeded, 118 controls failed, and 27 controls were skipped. This research is expected to be a reference for information system managers in managing system security.
2022-03-01
Triphena, Jeba, Thirumavalavan, Vetrivel Chelian, Jayaraman, Thiruvengadam S.  2021.  BER Analysis of RIS Assisted Bidirectional Relay System with Physical Layer Network Coding. 2021 National Conference on Communications (NCC). :1–6.
Reconfigurable Intelligent Surface (RIS) is one of the latest technologies in bringing a certain amount of control to the rather unpredictable and uncontrollable wireless channel. In this paper, RIS is introduced in a bidirectional system with two source nodes and a Decode and Forward (DF) relay node. It is assumed that there is no direct path between the source nodes. The relay node receives information from source nodes simultaneously. The Physical Layer Network Coding (PLNC) is applied at the relay node to assist in the exchange of information between the source nodes. Analytical expressions are derived for the average probability of errors at the source nodes and relay node of the proposed RIS-assisted bidirectional relay system. The Bit Error Rate (BER) performance is analyzed using both simulation and analytical forms. It is observed that RIS-assisted PLNC based bidirectional relay system performs better than the conventional PLNC based bidirectional system.
2022-08-26
Zuo, Zhiqiang, Tian, Ran, Wang, Yijing.  2021.  Bipartite Consensus for Multi-Agent Systems with Differential Privacy Constraint. 2021 40th Chinese Control Conference (CCC). :5062—5067.
This paper studies the differential privacy-preserving problem of discrete-time multi-agent systems (MASs) with antagonistic information, where the connected signed graph is structurally balanced. First, we introduce the bipartite consensus definitions in the sense of mean square and almost sure, respectively. Second, some criteria for mean square and almost sure bipartite consensus are derived, where the eventualy value is related to the gauge matrix and agents’ initial states. Third, we design the ε-differential privacy algorithm and characterize the tradeoff between differential privacy and system performance. Finally, simulations validate the effectiveness of the proposed algorithm.
2022-09-30
Bandara, Eranga, Liang, Xueping, Foytik, Peter, Shetty, Sachin, Zoysa, Kasun De.  2021.  A Blockchain and Self-Sovereign Identity Empowered Digital Identity Platform. 2021 International Conference on Computer Communications and Networks (ICCCN). :1–7.
Most of the existing identity systems are built on top of centralized storage systems. Storing identity data on these types of centralized storage platforms(e.g cloud storage, central servers) becomes a major privacy concern since various types of attacks and data breaches can happen. With this research, we are proposing blockchain and self-sovereign identity based digital identity (KYC - Know Your Customer) platform “Casper” to address the issues on centralized identity systems. “Casper ” is an Android/iOS based mobile identity wallet application that combines the integration of blockchain and a self-sovereign identity-based approach. Unlike centralized identity systems, the actual identities of the customer/users are stored in the customers’ mobile wallet application. The proof of these identities is stored in the blockchain-based decentralized storage as a self-sovereign identity proof. Casper platforms’ Self-Sovereign Identity(SSI)-based system provides a Zero Knowledge Proof(ZKP) mechanism to verify the identity information. Casper platform can be adopted in various domains such as healthcare, banking, government organization etc. As a use case, we have discussed building a digital identity wallet for banking customers with the Casper platform. Casper provides a secure, decentralized and ZKP verifiable identity by using blockchain and SSI based approach. It addresses the common issues in centralized/cloud-based identity systems platforms such as the lack of data immutability, lack of traceability, centralized control etc.
2022-07-01
Rangi, Anshuka, Franceschetti, Massimo.  2021.  Channel Coding Theorems in Non-stochastic Information Theory. 2021 IEEE International Symposium on Information Theory (ISIT). :1790–1795.
Recently, the δ-mutual information between uncertain variables has been introduced as a generalization of Nair's non-stochastic mutual information functional [1], [2]. Within this framework, we introduce four different notions of capacity and present corresponding coding theorems. Our definitions include an analogue of Shannon's capacity in a non-stochastic setting, and a generalization of the zero-error capacity. The associated coding theorems hold for stationary, memoryless, non-stochastic uncertain channels. These results establish the relationship between the δ-mutual information and our operational definitions, providing a step towards the development of a complete non-stochastic information theory.
2022-02-07
Zhang, Ruichao, Wang, Shang, Burton, Renee, Hoang, Minh, Hu, Juhua, Nascimento, Anderson C A.  2021.  Clustering Analysis of Email Malware Campaigns. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :95–102.
The task of malware labeling on real datasets faces huge challenges—ever-changing datasets and lack of ground-truth labels—owing to the rapid growth of malware. Clustering malware on their respective families is a well known tool used for improving the efficiency of the malware labeling process. In this paper, we addressed the challenge of clustering email malware, and carried out a cluster analysis on a real dataset collected from email campaigns over a 13-month period. Our main original contribution is to analyze the usefulness of email’s header information for malware clustering (a novel approach proposed by Burton [1]), and compare it with features collected from the malware directly. We compare clustering based on email header’s information with traditional features extracted from varied resources provided by VirusTotal [2], including static and dynamic analysis. We show that email header information has an excellent performance.