Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2022-07-29
Li, Hongman, Xu, Peng, Zhao, Qilin, Liu, Yihong.  2021.  Research on fault diagnosis in early stage of software development based on Object-oriented Bayesian Networks. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :161–168.
Continuous development of Internet of Things, big data and other emerging technologies has brought new challenges to the reliability of security-critical system products in various industries. Fault detection and evaluation in the early stage of software plays an important role in improving the reliability of software. However, fault prediction and evaluation, which are currently focused on the early stage of software, hardly provide high guidance for actual project development. In this study, a fault diagnosis method based on object-oriented Bayesian network (OOBN) is proposed. Starting from the time dimension and internal logic, a two-dimensional metric fault propagation model is established to calculate the failure rate of each early stage of software respectively, and the fault relationship of each stage is analyzed to find out the key fault units. In particular, it explores and validates the relationship between the failure rate of code phase and the failure caused by faults in requirement analysis stage and design stage in a train control system, to alert the developer strictly accordance with the industry development standards for software requirements analysis, design and coding, so as to reduce potential faults in the early stage. There is evidence that the study plays a crucial role to optimize the cost of software development and avoid catastrophic consequences.
2022-11-25
Li, Shengyu, Meng, Fanjun, Zhang, Dashun, Liu, Qingqing, Lu, Li, Ye, Yalan.  2021.  Research on Security Defense System of Industrial Control Network. 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). 2:631—635.
The importance of the security of industrial control network has become increasingly prominent. Aiming at the defects of main security protection system in the intelligent manufacturing industrial control network, we propose a security attack risk detection and defense, and emergency processing capability synchronization technology system suitable for the intelligent manufacturing industrial control system. Integrating system control and network security theories, a flexible and reconfigurable system-wide security architecture method is proposed. On the basis of considering the high availability and strong real-time of the system, our research centers on key technologies supporting system-wide security analysis, defense strategy deployment and synchronization, including weak supervision system reinforcement and pattern matching, etc.. Our research is helpful to solve the problem of industrial control network of “old but full of loopholes” caused by the long-term closed development of the production network of important parts, and alleviate the contradiction between the high availability of the production system and the relatively backward security defense measures.
2022-07-01
Pan, Conglin, Chen, Si, Wu, Wei, Qian, Jiachuan, Wang, Lijun.  2021.  Research on Space-Time Block Code Technology in MIMO System. 2021 7th International Conference on Computer and Communications (ICCC). :1875—1879.
MIMO technology has been widely used in the telecommunication systems nowadays, and the space-time coding is a key part of MIMO technology. A good coding scheme can exploit the spatial diversity to correct the error which is generated in transmission, and increase the normalized transfer rate with low decoding complexity. On the Basis of the research on different Space-Time Block Codes, this essay proposes a new STBC, Diagonal Block Orthogonal Space-Time Block Code. Then we will compare it with other STBCs in the performance of bit error rate, transfer rate, decoding complexity and peek-to-average power ratio, the final result will prove the superiority of DBOAST.
2022-05-10
Ye, YuGuang.  2021.  Research on the Security Defense Strategy of Smart City's Substitution Computer Network in Big Data. 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA). :1428–1431.
With the rapid development of the information technology era, the era of big data has also arrived. While computer networks are promoting the prosperity and development of society, their applications have become more extensive and in-depth. Smart city video surveillance systems have entered an era of networked surveillance and business integration. The problems are also endless. This article discusses computer network security in the era of big data, hoping to help strengthen the security of computer networks in our country. This paper studies the computer network security prevention strategies of smart cities in the era of big data.
2022-04-12
Guo, Yifan, Wang, Qianlong, Ji, Tianxi, Wang, Xufei, Li, Pan.  2021.  Resisting Distributed Backdoor Attacks in Federated Learning: A Dynamic Norm Clipping Approach. 2021 IEEE International Conference on Big Data (Big Data). :1172—1182.
With the advance in artificial intelligence and high-dimensional data analysis, federated learning (FL) has emerged to allow distributed data providers to collaboratively learn without direct access to local sensitive data. However, limiting access to individual provider’s data inevitably incurs security issues. For instance, backdoor attacks, one of the most popular data poisoning attacks in FL, severely threaten the integrity and utility of the FL system. In particular, backdoor attacks launched by multiple collusive attackers, i.e., distributed backdoor attacks, can achieve high attack success rates and are hard to detect. Existing defensive approaches, like model inspection or model sanitization, often require to access a portion of local training data, which renders them inapplicable to the FL scenarios. Recently, the norm clipping approach is developed to effectively defend against distributed backdoor attacks in FL, which does not rely on local training data. However, we discover that adversaries can still bypass this defense scheme through robust training due to its unchanged norm clipping threshold. In this paper, we propose a novel defense scheme to resist distributed backdoor attacks in FL. Particularly, we first identify that the main reason for the failure of the norm clipping scheme is its fixed threshold in the training process, which cannot capture the dynamic nature of benign local updates during the global model’s convergence. Motivated by it, we devise a novel defense mechanism to dynamically adjust the norm clipping threshold of local updates. Moreover, we provide the convergence analysis of our defense scheme. By evaluating it on four non-IID public datasets, we observe that our defense scheme effectively can resist distributed backdoor attacks and ensure the global model’s convergence. Noticeably, our scheme reduces the attack success rates by 84.23% on average compared with existing defense schemes.
2022-07-15
Jony, Mehdi Hassan, Johora, Fatema Tuj, Katha, Jannatul Ferdous.  2021.  A Robust and Efficient Numeric Approach for Relational Database Watermarking. 2021 3rd International Conference on Sustainable Technologies for Industry 4.0 (STI). :1—6.
Sharing relational databases on the Internet creates the need to protect these databases. Its output in substantial losses to the data storing systems because of unauthorized access to information that could lose novelty. The research associations use the research databases to mine new information about the research works of the relational databases that are available for free. It is a great challenge to maintain authenticity because these databases are vulnerable to security issues. Watermarking is a candidate solution that fully protects databases shared with the receiver. The protection of relational database ownership that may continue to evolve against the various aquatic mechanisms shared with the recipient that arouses appetite for attacks and must continue to evolve so that they can have database knowledge to support their decision-making system is effective. The relational database based onVirtual private key Watermarking using numeric attribute) involves embedding the same watermark in the same properties in different places in the same place. Therefore, data attackers cannot remove watermarks from data. The proposed strategy is to work by inserting watermark bits in such a way that it causes minimal distortion in the data and the data usability must remain intact after the data is watermarked. The proposed strategy is to work by inserting watermark bits in such a way that it causes minimal distortion in the data and the ability to use the data after watermarking the data must remain intact. The existence of a primary key is the main feature or compulsory item for most of the strategies. Our method provides solutions no primary key feature where the integrating search system of the database remains intact after watermarking distortion.
2022-06-09
Cobb, Adam D., Jalaian, Brian A., Bastian, Nathaniel D., Russell, Stephen.  2021.  Robust Decision-Making in the Internet of Battlefield Things Using Bayesian Neural Networks. 2021 Winter Simulation Conference (WSC). :1–12.
The Internet of Battlefield Things (IoBT) is a dynamically composed network of intelligent sensors and actuators that operate as a command and control, communications, computers, and intelligence complex-system with the aim to enable multi-domain operations. The use of artificial intelligence can help transform the IoBT data into actionable insight to create information and decision advantage on the battlefield. In this work, we focus on how accounting for uncertainty in IoBT systems can result in more robust and safer systems. Human trust in these systems requires the ability to understand and interpret how machines make decisions. Most real-world applications currently use deterministic machine learning techniques that cannot incorporate uncertainty. In this work, we focus on the machine learning task of classifying vehicles from their audio recordings, comparing deterministic convolutional neural networks (CNNs) with Bayesian CNNs to show that correctly estimating the uncertainty can help lead to robust decision-making in IoBT.
2022-10-03
Hu, Lingling, Liu, Liang, Liu, Yulei, Zhai, Wenbin, Wang, Xinmeng.  2021.  A robust fixed path-based routing scheme for protecting the source location privacy in WSNs. 2021 17th International Conference on Mobility, Sensing and Networking (MSN). :48–55.
With the development of wireless sensor networks (WSNs), WSNs have been widely used in various fields such as animal habitat detection, military surveillance, etc. This paper focuses on protecting the source location privacy (SLP) in WSNs. Existing algorithms perform poorly in non-uniform networks which are common in reality. In order to address the performance degradation problem of existing algorithms in non-uniform networks, this paper proposes a robust fixed path-based random routing scheme (RFRR), which guarantees the path diversity with certainty in non-uniform networks. In RFRR, the data packets are sent by selecting a routing path that is highly differentiated from each other, which effectively protects SLP and resists the backtracking attack. The experimental results show that RFRR increases the difficulty of the backtracking attack while safekeeping the balance between security and energy consumption.
2022-09-16
Abdaoui, Abderrazak, Erbad, Aiman, Al-Ali, Abdulla, Mohamed, Amr, Guizani, Mohsen.  2021.  A Robust Protocol for Smart eHealthcare based on Elliptic Curve Cryptography and Fuzzy logic in IoT. 2021 IEEE Globecom Workshops (GC Wkshps). :1—6.

Emerging technologies change the qualities of modern healthcare by employing smart systems for patient monitoring. To well use the data surrounding the patient, tiny sensing devices and smart gateways are involved. These sensing systems have been used to collect and analyze the real-time data remotely in Internet of Medical Thinks (IoM). Since the patient sensed information is so sensitive, the security and privacy of medical data are becoming challenging problem in IoM. It is then important to ensure the security, privacy and integrity of the transmitted data by designing a secure and a lightweight authentication protocol for the IoM. In this paper, in order to improve the authentication and communications in health care applications, we present a novel secure and anonymous authentication scheme. We will use elliptic curve cryptography (ECC) with random numbers generated by fuzzy logic. We simulate IoM scheme using network simulator 3 (NS3) and we employ optimized link state routing protocol (OLSR) algorithm and ECC at each node of the network. We apply some attack algorithms such as Pollard’s ρ and Baby-step Giant-step to evaluate the vulnerability of the proposed scheme.

2022-08-26
Elumar, Eray Can, Yagan, Osman.  2021.  Robustness of Random K-out Graphs. 2021 60th IEEE Conference on Decision and Control (CDC). :5526—5531.
We consider a graph property known as r-robustness of the random K-out graphs. Random K-out graphs, denoted as \$\textbackslashtextbackslashmathbbH(n;K)\$, are constructed as follows. Each of the n nodes select K distinct nodes uniformly at random, and then an edge is formed between these nodes. The orientation of the edges is ignored, resulting in an undirected graph. Random K-out graphs have been used in many applications including random (pairwise) key predistribution in wireless sensor networks, anonymous message routing in crypto-currency networks, and differentially-private federated averaging. r-robustness is an important metric in many applications where robustness of networks to disruptions is of practical interest, and r-robustness is especially useful in analyzing consensus dynamics. It was previously shown that consensus can be reached in an r-robust network for sufficiently large r even in the presence of some adversarial nodes. r-robustness is also useful for resilience against adversarial attacks or node failures since it is a stronger property than r-connectivity and thus can provide guarantees on the connectivity of the graph when up to r – 1 nodes in the graph are removed. In this paper, we provide a set of conditions for Kn and n that ensure, with high probability (whp), the r-robustness of the random K-out graph.
Qian, Wenfei, Wang, Pingjian, Lei, Lingguang, Chen, Tianyu, Zhang, Bikuan.  2021.  A Secure And High Concurrency SM2 Cooperative Signature Algorithm For Mobile Network. 2021 17th International Conference on Mobility, Sensing and Networking (MSN). :818—824.
Mobile devices have been widely used to deploy security-sensitive applications such as mobile payments, mobile offices etc. SM2 digital signature technology is critical in these applications to provide the protection including identity authentication, data integrity, action non-repudiation. Since mobile devices are prone to being stolen or lost, several server-aided SM2 cooperative signature schemes have been proposed for the mobile scenario. However, existing solutions could not well fit the high-concurrency scenario which needs lightweight computation and communication complexity, especially for the server sides. In this paper, we propose a SM2 cooperative signature algorithm (SM2-CSA) for the high-concurrency scenario, which involves only one-time client-server interaction and one elliptic curve addition operation on the server side in the signing procedure. Theoretical analysis and practical tests shows that SM2-CSA can provide better computation and communication efficiency compared with existing schemes without compromising the security.
2022-05-06
Cilleruelo, Carlos, Junquera-Sánchez, Javier, de-Marcos, Luis, Logghe, Nicolas, Martinez-Herraiz, Jose-Javier.  2021.  Security and privacy issues of data-over-sound technologies used in IoT healthcare devices. 2021 IEEE Globecom Workshops (GC Wkshps). :1–6.
Internet of things (IoT) healthcare devices, like other IoT devices, typically use proprietary protocol communications. Usually, these proprietary protocols are not audited and may present security flaws. Further, new proprietary protocols are desgined in the field of IoT devices, like data-over-sound communications. Data-over-sound is a new method of communication based on audio with increasing popularity due to its low hardware requirements. Only a speaker and a microphone are needed instead of the specific antennas required by Bluetooth or Wi-Fi protocols. In this paper, we analyze, audit and reverse engineer a modern IoT healthcare device used for performing electrocardiograms (ECG). The audited device is currently used in multiple hospitals and allows remote health monitoring of a patient with heart disease. For this auditing, we follow a black-box reverse-engineering approach and used STRIDE threat analysis methodology to assess all possible attacks. Following this methodology, we successfully reverse the proprietary data-over-sound protocol used by the IoT healthcare device and subsequently identified several vulnerabilities associated with the device. These vulnerabilities were analyzed through several experiments to classify and test them. We were able to successfully manipulate ECG results and fake heart illnesses. Furthermore, all attacks identified do not need any patient interaction, being this a transparent process which is difficult to detect. Finally, we suggest several short-term solutions, centred in the device isolation, as well as long-term solutions, centred in involved encryption capabilities.
2022-07-12
Kanca, Ali Melih, Sagiroglu, Seref.  2021.  Sharing Cyber Threat Intelligence and Collaboration. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :167—172.
With the developing technology, cyber threats are developing rapidly, and the motivations and targets of cyber attackers are changing. In order to combat these threats, cyber threat information that provides information about the threats and the characteristics of the attackers is needed. In addition, it is of great importance to cooperate with other stakeholders and share experiences so that more information about threat information can be obtained and necessary measures can be taken quickly. In this context, in this study, it is stated that the establishment of a cooperation mechanism in which cyber threat information is shared will contribute to the cyber security capacity of organizations. And using the Zack Information Gap analysis, the deficiency of organizations in sharing threat information were determined and suggestions were presented. In addition, there are cooperation mechanisms in the USA and the EU where cyber threat information is shared, and it has been evaluated that it would be beneficial to establish a similar mechanism in our country. Thus, it is evaluated that advanced or unpredictable cyber threats can be detected, the cyber security capacities of all stakeholders will increase and a safer cyber ecosystem will be created. In addition, it is possible to collect, store, distribute and share information about the analysis of cyber incidents and malware analysis, to improve existing cyber security products or to encourage new product development, by carrying out joint R&D studies among the stakeholders to ensure that domestic and national cyber security products can be developed. It is predicted that new analysis methods can be developed by using technologies such as artificial intelligence and machine learning.
2022-07-14
Ayub, Md. Ahsan, Sirai, Ambareen.  2021.  Similarity Analysis of Ransomware based on Portable Executable (PE) File Metadata. 2021 IEEE Symposium Series on Computational Intelligence (SSCI). :1–6.
Threats, posed by ransomware, are rapidly increasing, and its cost on both national and global scales is becoming significantly high as evidenced by the recent events. Ransomware carries out an irreversible process, where it encrypts victims' digital assets to seek financial compensations. Adversaries utilize different means to gain initial access to the target machines, such as phishing emails, vulnerable public-facing software, Remote Desktop Protocol (RDP), brute-force attacks, and stolen accounts. To combat these threats of ransomware, this paper aims to help researchers gain a better understanding of ransomware application profiles through static analysis, where we identify a list of suspicious indicators and similarities among 727 active ran-somware samples. We start with generating portable executable (PE) metadata for all the studied samples. With our domain knowledge and exploratory data analysis tasks, we introduce some of the suspicious indicators of the structure of ransomware files. We reduce the dimensionality of the generated dataset by using the Principal Component Analysis (PCA) technique and discover clusters by applying the KMeans algorithm. This motivates us to utilize the one-class classification algorithms on the generated dataset. As a result, the algorithms learn the common data boundary in the structure of our studied ransomware samples, and thereby, we achieve the data-driven similarities. We use the findings to evaluate the trained classifiers with the test samples and observe that the Local Outlier Factor (LoF) performs better on all the selected feature spaces compared to the One-Class SVM and the Isolation Forest algorithms.
Henkel, Werner, Namachanja, Maria.  2021.  A Simple Physical-Layer Key Generation for Frequency-Division Duplexing (FDD). 2021 15th International Conference on Signal Processing and Communication Systems (ICSPCS). :1—6.
Common randomness of channels offers the possibility to create cryptographic keys without the need for a key exchange procedure. Channel reciprocity for TDD (time-division duplexing) systems has been used for this purpose many times. FDD (frequency-division duplexing) systems, however, were long considered to not provide any usable symmetry. However, since the scattering transmission parameters S\textbackslashtextlessinf\textbackslashtextgreater12\textbackslashtextless/inf\textbackslashtextgreater and S\textbackslashtextlessinf\textbackslashtextgreater21\textbackslashtextless/inf\textbackslashtextgreater would ideally be the same due to reciprocity, when using neighboring frequency ranges for both directions, they would just follow a continuous curve when putting them next to each other. To not rely on absolute phase, we use phase differences between antennas and apply a polynomial curve fitting, thereafter, quantize the midpoint between the two frequency ranges with the two measurement directions. This is shown to work even with some spacing between the two bands. For key reconciliation, we force the measurement point from one direction to be in the midpoint of the quantization interval by a grid shift (or likewise measurement data shift). Since the histogram over the quantization intervals does not follow a uniform distribution, some source coding / hashing will be necessary. The key disagreement rate toward an eavesdropper was found to be close to 0.5. Additionally, when using an antenna array, a random permutation of antenna measurements can even further improve the protection against eavesdropping.
2022-03-02
Kotenko, Igor, Saenko, Igor, Lauta, Oleg, Karpov, Mikhail.  2021.  Situational Control of a Computer Network Security System in Conditions of Cyber Attacks. 2021 14th International Conference on Security of Information and Networks (SIN). 1:1–8.
Modern cyberattacks are the most powerful disturbance factor for computer networks, as they have a complex and devastating impact. The impact of cyberattacks is primarily aimed at disrupting the performance of computer network protection means. Therefore, managing this defense system in the face of cyberattacks is an important task. The paper examines a technique for constructing an effective control system for a computer network security system operating in real time in the context of cyber attacks. It is supposed that it is built on the basis of constructing a system state space and a stack of control decisions. The probability of finding the security system in certain state at each control step is calculated using a finite Markov chain. The technique makes it possible to predict the number of iterations for managing the security system when exposed to cyber attacks, depending on the segment of the space of its states and the selected number of transitions, as well as automatically generate control decisions. An algorithm has been developed for situational control of a computer network security system in conditions of cyber attacks. The experimental results obtained using the generated dataset demonstrated the high efficiency of the developed technique and the ability to use it to determine the parameters that are most susceptible to abnormal deviations during the impact of cyber attacks.
2022-05-10
Wang, Ben, Chu, Hanting, Zhang, Pengcheng, Dong, Hai.  2021.  Smart Contract Vulnerability Detection Using Code Representation Fusion. 2021 28th Asia-Pacific Software Engineering Conference (APSEC). :564–565.
At present, most smart contract vulnerability detection use manually-defined patterns, which is time-consuming and far from satisfactory. To address this issue, researchers attempt to deploy deep learning techniques for automatic vulnerability detection in smart contracts. Nevertheless, current work mostly relies on a single code representation such as AST (Abstract Syntax Tree) or code tokens to learn vulnerability characteristics, which might lead to incompleteness of learned semantics information. In addition, the number of available vulnerability datasets is also insufficient. To address these limitations, first, we construct a dataset covering most typical types of smart contract vulnerabilities, which can accurately indicate the specific row number where a vulnerability may exist. Second, for each single code representation, we propose a novel way called AFS (AST Fuse program Slicing) to fuse code characteristic information. AFS can fuse the structured information of AST with program slicing information and detect vulnerabilities by learning new vulnerability characteristic information.
2022-07-29
Saxena, Nikhil, Narayanan, Ram Venkat, Meka, Juneet Kumar, Vemuri, Ranga.  2021.  SRTLock: A Sensitivity Resilient Two-Tier Logic Encryption Scheme. 2021 IEEE International Symposium on Smart Electronic Systems (iSES). :389—394.
Logic encryption is a method to improve hardware security by inserting key gates on carefully selected signals in a logic design. Various logic encryption schemes have been proposed in the past decade. Many attack methods to thwart these logic locking schemes have also emerged. The satisfiability (SAT) attack can recover correct keys for many logic obfuscation methods. Recently proposed sensitivity analysis attack can decrypt stripped functionality based logic encryption schemes. This article presents a new encryption scheme named SRTLock, which is resilient against both attacks. SRTLock method first generates 0-injection circuits and encrypts the functionality of these nodes with the key inputs. In the next step, these values are used to control the sensitivity of the functionally stripped output for specific input patterns. The resultant locked circuit is resilient against the SAT and sensitivity analysis attacks. Experimental results demonstrating this on several attacks using standard benchmark circuits are presented.
2022-07-15
Wang, Yan, Allouache, Yacine, Joubert, Christian.  2021.  A Staffing Recommender System based on Domain-Specific Knowledge Graph. 2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS). :1—6.
In the economics environment, Job Matching is always a challenge involving the evolution of knowledge and skills. A good matching of skills and jobs can stimulate the growth of economics. Recommender System (RecSys), as one kind of Job Matching, can help the candidates predict the future job relevant to their preferences. However, RecSys still has the problem of cold start and data sparsity. The content-based filtering in RecSys needs the adaptive data for the specific staffing tasks of Bidirectional Encoder Representations from Transformers (BERT). In this paper, we propose a job RecSys based on skills and locations using a domain-specific Knowledge Graph (KG). This system has three parts: a pipeline of Named Entity Recognition (NER) and Relation Extraction (RE) using BERT; a standardization system for pre-processing, semantic enrichment and semantic similarity measurement; a domain-specific Knowledge Graph (KG). Two different relations in the KG are computed by cosine similarity and Term Frequency-Inverse Document Frequency (TF-IDF) respectively. The raw data used in the staffing RecSys include 3000 descriptions of job offers from Indeed, 126 Curriculum Vitae (CV) in English from Kaggle and 106 CV in French from Linx of Capgemini Engineering. The staffing RecSys is integrated under an architecture of Microservices. The autonomy and effectiveness of the staffing RecSys are verified through the experiment using Discounted Cumulative Gain (DCG). Finally, we propose several potential research directions for this research.
2022-10-20
Thorpe, Adam J., Oishi, Meeko M. K..  2021.  Stochastic Optimal Control via Hilbert Space Embeddings of Distributions. 2021 60th IEEE Conference on Decision and Control (CDC). :904—911.
Kernel embeddings of distributions have recently gained significant attention in the machine learning community as a data-driven technique for representing probability distributions. Broadly, these techniques enable efficient computation of expectations by representing integral operators as elements in a reproducing kernel Hilbert space. We apply these techniques to the area of stochastic optimal control theory and present a method to compute approximately optimal policies for stochastic systems with arbitrary disturbances. Our approach reduces the optimization problem to a linear program, which can easily be solved via the Lagrangian dual, without resorting to gradient-based optimization algorithms. We focus on discrete- time dynamic programming, and demonstrate our proposed approach on a linear regulation problem, and on a nonlinear target tracking problem. This approach is broadly applicable to a wide variety of optimal control problems, and provides a means of working with stochastic systems in a data-driven setting.
2022-11-25
Li, Qiqi, Wu, Peng, Han, Ling, Bi, Danyang, Zeng, Zheng.  2021.  A Study of Identifier Resolution Security Strategy Based on Security Domains. 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST). :359—362.
The widespread application of industrial Internet identifiers has increased the security risks of industrial Internet and identifier resolution system. In order to improve the security capabilities of identifier resolution system, this paper analyzes the security challenges faced by identifier resolution system at this stage, and in line with the concept of layered security defense in depth, divides the security domains of identifier resolution system and proposes a multi-level security strategy based on security domains by deploying appropriate protective measures in each security domain.
2022-02-07
Abbood, Zainab Ali, Atilla, Doğu Çağdaş, Aydin, Çağatay, Mahmoud, Mahmoud Shuker.  2021.  A Survey on Intrusion Detection System in Ad Hoc Networks Based on Machine Learning. 2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI). :1–8.
This advanced research survey aims to perform intrusion detection and routing in ad hoc networks in wireless MANET networks using machine learning techniques. The MANETs are composed of several ad-hoc nodes that are randomly or deterministically distributed for communication and acquisition and to forward the data to the gateway for enhanced communication securely. MANETs are used in many applications such as in health care for communication; in utilities such as industries to monitor equipment and detect any malfunction during regular production activity. In general, MANETs take measurements of the desired application and send this information to a gateway, whereby the user can interpret the information to achieve the desired purpose. The main importance of MANETs in intrusion detection is that they can be trained to detect intrusion and real-time attacks in the CIC-IDS 2019 dataset. MANETs routing protocols are designed to establish routes between the source and destination nodes. What these routing protocols do is that they decompose the network into more manageable pieces and provide ways of sharing information among its neighbors first and then throughout the whole network. The landscape of exciting libraries and techniques is constantly evolving, and so are the possibilities and options for experiments. Implementing the framework in python helps in reducing syntactic complexity, increases performance compared to implementations in scripting languages, and provides memory safety.
2022-07-12
ERÇİN, Mehmet Serhan, YOLAÇAN, Esra Nergis.  2021.  A system for redicting SQLi and XSS Attacks. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :155—160.
In this study, it is aimed to reduce False-Alarm levels and increase the correct detection rate in order to reduce this uncertainty. Within the scope of the study, 13157 SQLi and XSS type malicious and 10000 normal HTTP Requests were used. All HTTP requests were received from the same web server, and it was observed that normal requests and malicious requests were close to each other. In this study, a novel approach is presented via both digitization and expressing the data with words in the data preprocessing stages. LSTM, MLP, CNN, GNB, SVM, KNN, DT, RF algorithms were used for classification and the results were evaluated with accuracy, precision, recall and F1-score metrics. As a contribution of this study, we can clearly express the following inferences. Each payload even if it seems different which has the same impact maybe that we can clearly view after the preprocessing phase. After preprocessing we are calculating euclidean distances which brings and gives us the relativity between expressions. When we put this relativity as an entry data to machine learning and/or deep learning models, perhaps we can understand the benign request or the attack vector difference.
2022-08-12
Telghamti, Samira, Derdouri, Lakhdhar.  2021.  Towards a Trust-based Model for Access Control for Graph-Oriented Databases. 2021 International Conference on Theoretical and Applicative Aspects of Computer Science (ICTAACS). :1—3.
Privacy and data security are critical aspects in databases, mainly when the latter are publically accessed such in social networks. Furthermore, for advanced databases, such as NoSQL ones, security models and security meta-data must be integrated to the business specification and data. In the literature, the proposed models for NoSQL databases can be considered as static, in the sense where the privileges for a given user are predefined and remain unchanged during job sessions. In this paper, we propose a novel model for NoSQL database access control that we aim that it will be dynamic. To be able to design such model, we have considered the Trust concept to compute the reputation degree for a given user that plays a given role.
2022-09-30
Xin, Chen, Xianda, Liu, Yiheng, Jiang, Chen, Wang.  2021.  The Trust Evaluation and Anomaly Detection Model of Industrial Control Equipment Based on Multiservice and Multi-attribute. 2021 7th International Conference on Computer and Communications (ICCC). :1575–1581.
In the industrial control system, in order to solve the problem that the installation of smart devices in a transparent environment are faced with the unknown attack problems, because most of the industrial control equipment to detect unknown risks, Therefore, by studying the security protection of the current industrial control system and the trust mechanism that should be widely used in the Internet of things, this paper presents the abnormal node detection mode based on comprehensive trust applied to the industrial control system scenarios. This model firstly proposes a model, which fuses direct and indirect trust values into current trust values through support algorithm and vector similarity algorithm, and then combines them with historical trust values, and gives the calculation method of each trust value. Finally, a method to determine abnormal nodes based on comprehensive trust degree is given to realize a detection process for all industrial control nodes. By analyzing the real data case provided by Melbourne Water, it is concluded that this model can improve the detection range and detection accuracy of abnormal nodes. It can accurately judge and effectively resist malicious behavior and also have a good resistance to aggression.