Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2022-01-10
Ibrahim, Mariam, Nabulsi, Intisar.  2021.  Security Analysis of Smart Home Systems Applying Attack Graph. 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4). :230–234.
In this work, security analysis of a Smart Home System (SHS) is inspected. The paper focuses on describing common and likely cyber security threats against SHS. This includes both their influence on human privacy and safety. The SHS is properly presented and formed applying Architecture Analysis and Design Language (AADL), exhibiting the system layout, weaknesses, attack practices, besides their requirements and post settings. The obtained model is later inspected along with a security requirement with JKind model tester software for security endangerment. The overall attack graph causing system compromise is graphically given using Graphviz.
Bardhan, Shuvo, Battou, Abdella.  2021.  Security Metric for Networks with Intrusion Detection Systems having Time Latency using Attack Graphs. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1107–1113.
Probabilistic security metrics estimate the vulnerability of a network in terms of the likelihood of an attacker reaching the goal states (of a network) by exploiting the attack graph paths. The probability computation depends upon several assumptions regarding the possible attack scenarios. In this paper, we extend the existing security metric to model networks with intrusion detection systems and their associated uncertainties and time latencies. We consider learning capabilities of attackers as well as detection systems. Estimation of risk is obtained by using the attack paths that are undetectable owing to the latency of the detection system. Thus, we define the overall vulnerability (of a network) as a function of the time window available to an attacker for repeated exploring (via learning) and exploitation of a network, before the attack is mitigated by the detection system. Finally, we consider the realistic scenario where an attacker explores and abandons various partial paths in the attack graph before the actual exploitation. A dynamic programming formulation of the vulnerability computation methodology is proposed for this scenario. The nature of these metrics are explained using a case study showing the vulnerability spectrum from the case of zero detection latency to a no detection scenario.
Schrenk, Bernhard.  2021.  Simplified Synaptic Receptor for Coherent Optical Neural Networks. 2021 IEEE Photonics Society Summer Topicals Meeting Series (SUM). :1–2.
Advancing artificial neural networks to the coherent optical domain offers several advantages, such as a filterless synaptic interconnect with increased routing flexibility. Towards this direction, a coherent synaptic receptor with integrated multiplication function will be experimentally evaluated for a 1-GHz train of 130-ps spikes.
2022-03-01
Wang, Jie, Jia, Zhiyuan, Yin, Hoover H. F., Yang, Shenghao.  2021.  Small-Sample Inferred Adaptive Recoding for Batched Network Coding. 2021 IEEE International Symposium on Information Theory (ISIT). :1427–1432.
Batched network coding is a low-complexity network coding solution to feedbackless multi-hop wireless packet network transmission with packet loss. The data to be transmitted is encoded into batches where each of which consists of a few coded packets. Unlike the traditional forwarding strategy, the intermediate network nodes have to perform recoding, which generates recoded packets by network coding operations restricted within the same batch. Adaptive recoding is a technique to adapt the fluctuation of packet loss by optimizing the number of recoded packets per batch to enhance the throughput. The input rank distribution, which is a piece of information regarding the batches arriving at the node, is required to apply adaptive recoding. However, this distribution is not known in advance in practice as the incoming link's channel condition may change from time to time. On the other hand, to fully utilize the potential of adaptive recoding, we need to have a good estimation of this distribution. In other words, we need to guess this distribution from a few samples so that we can apply adaptive recoding as soon as possible. In this paper, we propose a distributionally robust optimization for adaptive recoding with a small-sample inferred prediction of the input rank distribution. We develop an algorithm to efficiently solve this optimization with the support of theoretical guarantees that our optimization's performance would constitute as a confidence lower bound of the optimal throughput with high probability.
2022-04-25
Khichi, Manish, Kumar Yadav, Rajesh.  2021.  A Threat of Deepfakes as a Weapon on Digital Platform and their Detection Methods. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :01–08.
Advances in machine learning, deep learning, and Artificial Intelligence(AI) allows people to exchange other people's faces and voices in videos to make it look like what they did or say whatever you want to say. These videos and photos are called “deepfake” and are getting more complicated every day and this has lawmakers worried. This technology uses machine learning technology to provide computers with real data about images, so that we can make forgeries. The creators of Deepfake use artificial intelligence and machine learning algorithms to mimic the work and characteristics of real humans. It differs from counterfeit traditional media because it is difficult to identify. As In the 2020 elections loomed, AI-generated deepfakes were hit the news cycle. DeepFakes threatens facial recognition and online content. This deception can be dangerous, because if used incorrectly, this technique can be abused. Fake video, voice, and audio clips can do enormous damage. This paper examines the algorithms used to generate deepfakes as well as the methods proposed to detect them. We go through the threats, research patterns, and future directions for deepfake technologies in detail. This research provides a detailed description of deep imitation technology and encourages the creation of new and more powerful methods to deal with increasingly severe deep imitation by studying the history of deep imitation.
2022-01-25
Uddin Nadim, Taef, Foysal.  2021.  Towards Autonomic Entropy Based Approach for DDoS Attack Detection and Mitigation Using Software Defined Networking. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). :1—5.
Software defined networking (SDN) architecture frame- work eases the work of the network administrators by separating the data plane from the control plane. This provides a programmable interface for applications development related to security and management. The centralized logical controller provides more control over the total network, which has complete network visibility. These SDN advantages expose the network to vulnerabilities and the impact of the attacks is much severe when compared to traditional networks, where the network devices have protection from the attacks and limits the occurrence of attacks. In this paper, we proposed an entropy based algorithm in SDN to detect as well as stopping distributed denial of service (DDoS) attacks on the servers or clouds or hosts. Firstly, there explored various attacks that can be launched on SDN at different layers. Basically DDoS is one kind of denial of service attack in which an attacker uses multiple distributed sources for attacking a particular server. Every network in a system has an entropy and an increase in the randomness of probability causes entropy to decrease. In comparison with previous entropy based approaches this approach has higher performance in distinguishing legal and illegal traffics and blocking illegal traffic paths. Linux OS and Mininet Simulator along with POX controller are used to validate the proposed approach. By conducting pervasive simulation along with theoretical analysis this method can definitely detect and stop DDoS attacks automatically.
Hughes, Kieran, McLaughlin, Kieran, Sezer, Sakir.  2021.  Towards Intrusion Response Intel. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :337—342.
Threat Intelligence has been a key part of the success of Intrusion Detection, with several trusted sources leading to wide adoption and greater understanding of new and trending threats to computer networks. Identifying potential threats and live attacks on networks is only half the battle, knowing how to correctly respond to these threats and attacks requires in-depth and domain specific knowledge, which may be unique to subject experts and software vendors. Network Incident Responders and Intrusion Response Systems can benefit from a similar approach to Threat Intel, with a focus on potential Response actions. A qualitative comparison of current Threat Intel Sources and prominent Intrusion Response Systems is carried out to aid in the identification of key requirements to be met to enable the adoption of Response Intel. Building on these requirements, a template for Response Intel is proposed which incorporates standardised models developed by MITRE. Similarly, to facilitate the automated use of Response Intel, a structure for automated Response Actions is proposed.
2022-04-18
Aivatoglou, Georgios, Anastasiadis, Mike, Spanos, Georgios, Voulgaridis, Antonis, Votis, Konstantinos, Tzovaras, Dimitrios.  2021.  A Tree-Based Machine Learning Methodology to Automatically Classify Software Vulnerabilities. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :312–317.
Software vulnerabilities have become a major problem for the security analysts, since the number of new vulnerabilities is constantly growing. Thus, there was a need for a categorization system, in order to group and handle these vulnerabilities in a more efficient way. Hence, the MITRE corporation introduced the Common Weakness Enumeration that is a list of the most common software and hardware vulnerabilities. However, the manual task of understanding and analyzing new vulnerabilities by security experts, is a very slow and exhausting process. For this reason, a new automated classification methodology is introduced in this paper, based on the vulnerability textual descriptions from National Vulnerability Database. The proposed methodology, combines textual analysis and tree-based machine learning techniques in order to classify vulnerabilities automatically. The results of the experiments showed that the proposed methodology performed pretty well achieving an overall accuracy close to 80%.
2022-06-09
Xu, Qichao, Zhao, Lifeng, Su, Zhou.  2021.  UAV-assisted Abnormal Vehicle Behavior Detection in Internet of Vehicles. 2021 40th Chinese Control Conference (CCC). :7500–7505.
With advantages of low cost, high mobility, and flexible deployment, unmanned aerial vehicle (UAVs) are employed to efficiently detect abnormal vehicle behaviors (AVBs) in the internet of vehicles (IoVs). However, due to limited resources including battery, computing, and communication, UAVs are selfish to work cooperatively. To solve the above problem, in this paper, a game theoretical UAV incentive scheme in IoVs is proposed. Specifically, the abnormal behavior model is first constructed, where three model categories are defined: velocity abnormality, distance abnormality, and overtaking abnormality. Then, the barging pricing framework is designed to model the interactions between UAVs and IoVs, where the transaction prices are determined with the abnormal behavior category detected by UAVs. At last, simulations are conducted to verify the feasibility and effectiveness of our proposed scheme.
2022-01-10
M, Babu, R, Hemchandhar, D, Harish Y., S, Akash, K, Abhishek Todi.  2021.  Voice Prescription with End-to-End Security Enhancements. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :1–8.

The recent analysis indicates more than 250,000 people in the United States of America (USA) die every year because of medical errors. World Health Organisation (WHO) reports states that 2.6 million deaths occur due to medical and its prescription errors. Many of the errors related to the wrong drug/dosage administration by caregivers to patients due to indecipherable handwritings, drug interactions, confusing drug names, etc. The espousal of Mobile-based speech recognition applications will eliminate the errors. This allows physicians to narrate the prescription instead of writing. The application can be accessed through smartphones and can be used easily by everyone. An application program interface has been created for handling requests. Natural language processing is used to read text, interpret and determine the important words for generating prescriptions. The patient data is stored and used according to the Health Insurance Portability and Accountability Act of 1996 (HIPAA) guidelines. The SMS4-BSK encryption scheme is used to provide the data transmission securely over Wireless LAN.

2021-12-22
Murray, Bryce, Anderson, Derek T., Havens, Timothy C..  2021.  Actionable XAI for the Fuzzy Integral. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
The adoption of artificial intelligence (AI) into domains that impact human life (healthcare, agriculture, security and defense, etc.) has led to an increased demand for explainable AI (XAI). Herein, we focus on an under represented piece of the XAI puzzle, information fusion. To date, a number of low-level XAI explanation methods have been proposed for the fuzzy integral (FI). However, these explanations are tailored to experts and its not always clear what to do with the information they return. In this article we review and categorize existing FI work according to recent XAI nomenclature. Second, we identify a set of initial actions that a user can take in response to these low-level statistical, graphical, local, and linguistic XAI explanations. Third, we investigate the design of an interactive user friendly XAI report. Two case studies, one synthetic and one real, show the results of following recommended actions to understand and improve tasks involving classification.
Panda, Akash Kumar, Kosko, Bart.  2021.  Bayesian Pruned Random Rule Foams for XAI. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
A random rule foam grows and combines several independent fuzzy rule-based systems by randomly sampling input-output data from a trained deep neural classifier. The random rule foam defines an interpretable proxy system for the sampled black-box classifier. The random foam gives the complete Bayesian posterior probabilities over the foam subsystems that contribute to the proxy system's output for a given pattern input. It also gives the Bayesian posterior over the if-then fuzzy rules in each of these constituent foams. The random foam also computes a conditional variance that describes the uncertainty in its predicted output given the random foam's learned rule structure. The mixture structure leads to bootstrap confidence intervals around the output. Using the Bayesian posterior probabilities to prune or discard low-probability sub-foams improves the system's classification accuracy. Simulations used the MNIST image data set of 60,000 gray-scale images of ten hand-written digits. Dropping the lowest-probability foams per input pattern brought the pruned random foam's classification accuracy nearly to that of the neural classifier. Posterior pruning outperformed simple accuracy pruning of a random foam and outperformed a random forest trained on the same neural classifier.
2021-12-21
Elumar, Eray Can, Sood, Mansi, Ya\u gan, Osman.  2021.  On the Connectivity and Giant Component Size of Random K-out Graphs Under Randomly Deleted Nodes. 2021 IEEE International Symposium on Information Theory (ISIT). :2572–2577.
Random K-out graphs, denoted \$$\backslash$mathbbH(n;K)\$, are generated by each of the \$n\$ nodes drawing \$K\$ out-edges towards \$K\$ distinct nodes selected uniformly at random, and then ignoring the orientation of the arcs. Recently, random K-out graphs have been used in applications as diverse as random (pairwise) key predistribution in ad-hoc networks, anonymous message routing in crypto-currency networks, and differentially-private federated averaging. In many applications, connectivity of the random K-out graph when some of its nodes are dishonest, have failed, or have been captured is of practical interest. We provide a comprehensive set of results on the connectivity and giant component size of \$$\backslash$mathbbH(n;K\_n,$\backslash$gamma\_n)\$, i.e., random K-out graph when \textsubscriptn of its nodes, selected uniformly at random, are deleted. First, we derive conditions for \textsubscriptn and \$n\$ that ensure, with high probability (whp), the connectivity of the remaining graph when the number of deleted nodes is \$$\backslash$gamma\_n=Ømega(n)\$ and \$$\backslash$gamma\_n=o(n)\$, respectively. Next, we derive conditions for \$$\backslash$mathbbH(n;K\_n, $\backslash$gamma\_n)\$ to have a giant component, i.e., a connected subgraph with \$Ømega(n)\$ nodes, whp. This is also done for different scalings of \textsubscriptn and upper bounds are provided for the number of nodes outside the giant component. Simulation results are presented to validate the usefulness of the results in the finite node regime.
2022-04-26
Biswas, Anindya Kumar, Dasgupta, Mou.  2021.  Cryptanalysis and Improvement of Zheng's Signcryption Technique. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1–5.

The signcryption technique was first proposed by Y. Zheng, where two cryptographic operations digital signature and message encryption are made combinedly. We cryptanalyze the technique and observe that the signature and encryption become vulnerable if the forged public keys are used. This paper proposes an improvement using modified DSS (Digital Signature Standard) version of ElGamal signature and DHP (Diffie-Hellman key exchange protocol), and shows that the vulnerabilities in both the signature and encryption methods used in Zheng's signcryption are circumvented. DHP is used for session symmetric key establishment and it is combined with the signature in such a way that the vulnerabilities of DHP can be avoided. The security and performance analysis of our signcryption technique are provided and found that our scheme is secure and designed using minimum possible operations with comparable computation cost of Zheng's scheme.

2022-04-13
Khashab, Fatima, Moubarak, Joanna, Feghali, Antoine, Bassil, Carole.  2021.  DDoS Attack Detection and Mitigation in SDN using Machine Learning. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :395—401.

Software Defined Networking (SDN) is a networking paradigm that has been very popular due to its advantages over traditional networks with regard to scalability, flexibility, and its ability to solve many security issues. Nevertheless, SDN networks are exposed to new security threats and attacks, especially Distributed Denial of Service (DDoS) attacks. For this aim, we have proposed a model able to detect and mitigate attacks automatically in SDN networks using Machine Learning (ML). Different than other approaches found in literature which use the native flow features only for attack detection, our model extends the native features. The extended flow features are the average flow packet size, the number of flows to the same host as the current flow in the last 5 seconds, and the number of flows to the same host and port as the current flow in the last 5 seconds. Six ML algorithms were evaluated, namely Logistic Regression (LR), Naive Bayes (NB), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). The experiments showed that RF is the best performing ML algorithm. Also, results showed that our model is able to detect attacks accurately and quickly, with a low probability of dropping normal traffic.

2021-12-22
Poli, Jean-Philippe, Ouerdane, Wassila, Pierrard, Régis.  2021.  Generation of Textual Explanations in XAI: The Case of Semantic Annotation. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
Semantic image annotation is a field of paramount importance in which deep learning excels. However, some application domains, like security or medicine, may need an explanation of this annotation. Explainable Artificial Intelligence is an answer to this need. In this work, an explanation is a sentence in natural language that is dedicated to human users to provide them clues about the process that leads to the decision: the labels assignment to image parts. We focus on semantic image annotation with fuzzy logic that has proven to be a useful framework that captures both image segmentation imprecision and the vagueness of human spatial knowledge and vocabulary. In this paper, we present an algorithm for textual explanation generation of the semantic annotation of image regions.
2021-12-20
Guri, Mordechai.  2021.  LANTENNA: Exfiltrating Data from Air-Gapped Networks via Ethernet Cables Emission. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :745–754.
In this paper we present LANTENNA - a new type of an electromagnetic attack allowing adversaries to leak sensitive data from isolated, air-gapped networks. Malicious code in air-gapped computers gathers sensitive data and then encodes it over radio waves emanated from Ethernet cables. A nearby receiving device can intercept the signals wirelessly, decodes the data and sends it to the attacker. We discuss the exiltration techniques, examine the covert channel characteristics, and provide implementation details. Notably, the malicious code can run in an ordinary user mode process, and can successfully operates from within a virtual machine. We evaluate the covert channel in different scenarios and present a set of of countermeasures. Our experiments show that with the LANTENNA attack, data can be exfiltrated from air-gapped computers to a distance of several meters away.
2022-04-26
Wang, Haoxiang, Zhang, Jiasheng, Lu, Chenbei, Wu, Chenye.  2021.  Privacy Preserving in Non-Intrusive Load Monitoring: A Differential Privacy Perspective. 2021 IEEE Power Energy Society General Meeting (PESGM). :01–01.

Smart meter devices enable a better understanding of the demand at the potential risk of private information leakage. One promising solution to mitigating such risk is to inject noises into the meter data to achieve a certain level of differential privacy. In this paper, we cast one-shot non-intrusive load monitoring (NILM) in the compressive sensing framework, and bridge the gap between theoretical accuracy of NILM inference and differential privacy's parameters. We then derive the valid theoretical bounds to offer insights on how the differential privacy parameters affect the NILM performance. Moreover, we generalize our conclusions by proposing the hierarchical framework to solve the multishot NILM problem. Numerical experiments verify our analytical results and offer better physical insights of differential privacy in various practical scenarios. This also demonstrates the significance of our work for the general privacy preserving mechanism design.

2021-12-21
Hamouid, Khaled, Omar, Mawloud, Adi, Kamel.  2021.  A Privacy-Preserving Authentication Model Based on Anonymous Certificates in IoT. 2021 Wireless Days (WD). :1–6.
This paper proposes an anonymity based mechanism for providing privacy in IoT environment. Proposed scheme allows IoT entities to anonymously interacting and authenticating with each other, or even proving that they have trustworthy relationship without disclosing their identities. Authentication is based on an anonymous certificates mechanism where interacting IoT entities could unlinkably prove possession of a valid certificate without revealing any incorporated identity-related information, thereby preserving their privacy and thwarting tracking and profiling attacks. Through a security analysis, we demonstrate the reliability of our solution.
2022-03-23
Shukla, Saurabh, Thakur, Subhasis, Breslin, John G..  2021.  Secure Communication in Smart Meters using Elliptic Curve Cryptography and Digital Signature Algorithm. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :261—266.
With the advancement in the growth of Internet-of-Things (IoT), its number of applications has also increased such as in healthcare, smart cities, vehicles, industries, household appliances, and Smart Grids (SG). One of the major applications of IoT is the SG and smart meter which consists of a large number of internet-connected sensors and can communicate bi-directionally in real-time. The SG network involves smart meters, data collectors, generators, and sensors connected with the internet. SG networks involve the generation, distribution, transmission, and consumption of electrical power supplies. It consists of Household Area Network (HAN), and Neighborhood Area Network (NAN) for communication. Smart meters can communicate bidirectionally with consumers and provide real-time information to utility offices. But this communication channel is a wide-open network for data transmission. Therefore, it makes the SG network and smart meter vulnerable to outside hacker and various Cyber-Physical System (CPS) attacks such as False Data Injection (FDI), inserting malicious data, erroneous data, manipulating the sensor reading values. Here cryptography techniques can play a major role along with the private blockchain model for secure data transmission in smart meters. Hence, to overcome these existing issues and challenges in smart meter communication we have proposed a blockchain-based system model for secure communication along with a novel Advanced Elliptic Curve Cryptography Digital Signature (AECCDS) algorithm in Fog Computing (FC) environment. Here FC nodes will work as miners at the edge of smart meters for secure and real-time communication. The algorithm is implemented using iFogSim, Geth version 1.9.25, Ganache, Truffle for compiling smart contracts, Anaconda (Python editor), and ATOM as language editor for the smart contracts.
2022-03-01
Raja, Subashree, Bhamidipati, Padmaja, Liu, Xiaobang, Vemuri, Ranga.  2021.  Security Capsules: An Architecture for Post-Silicon Security Assertion Validation for Systems-on-Chip. 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :248–253.
In this paper, we propose a methodology for post-silicon validation through the evaluation of security assertions for systems-on-chip (SoC). The methodology is centered around a security architecture in which a "security capsule" is attached to each IP core in the SoC. The security capsule consists of a set of on-line and off-line assertion monitors, a dynamic trace-buffer to trace selected groups of signals, and a dynamic trace controller. The architecture is supported by a trace signal selection and grouping algorithm and a dynamic signal tracing method to evaluate the off-chip monitors. This paper presents the security capsule architecture, the signal selection and grouping algorithm, and the run-time signal tracing method. Results of using the methodology on two SoC architectures based on the OpenRISC-1200 and RISC-V processors are presented.
2022-04-19
Perumal, Seethalakshmi, Sujatha P, Kola.  2021.  Stacking Ensemble-based XSS Attack Detection Strategy Using Classification Algorithms. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :897–901.

The accessibility of the internet and mobile platforms has risen dramatically due to digital technology innovations. Web applications have opened up a variety of market possibilities by supplying consumers with a wide variety of digital technologies that benefit from high accessibility and functionality. Around the same time, web application protection continues to be an important challenge on the internet, and security must be taken seriously in order to secure confidential data. The threat is caused by inadequate validation of user input information, software developed without strict adherence to safety standards, vulnerability of reusable software libraries, software weakness, and so on. Through abusing a website's vulnerability, introduers are manipulating the user's information in order to exploit it for their own benefit. Then introduers inject their own malicious code, stealing passwords, manipulating user activities, and infringing on customers' privacy. As a result, information is leaked, applications malfunction, confidential data is accessed, etc. To mitigate the aforementioned issues, stacking ensemble based classifier model for Cross-site scripting (XSS) attack detection is proposed. Furthermore, the stacking ensembles technique is used in combination with different machine learning classification algorithms like k-Means, Random Forest and Decision Tree as base-learners to reliably detect XSS attack. Logistic Regression is used as meta-learner to predict the attack with greater accuracy. The classification algorithms in stacking model explore the problem in their own way and its results are given as input to the meta-learner to make final prediction, thus improving the overall detection accuracy of XSS attack in stacking than the individual models. The simulation findings demonstrate that the proposed model detects XSS attack successfully.

2021-12-21
Kowalski, Dariusz R., Mosteiro, Miguel A..  2021.  Time and Communication Complexity of Leader Election in Anonymous Networks. 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS). :449–460.
We study the problem of randomized Leader Election in synchronous distributed networks with indistinguishable nodes. We consider algorithms that work on networks of arbitrary topology in two settings, depending on whether the size of the network, i.e., the number of nodes \$n\$, is known or not. In the former setting, we present a new Leader Election protocol that improves over previous work by lowering message complexity and making it close to a lower bound by a factor in \$$\backslash$widetildeO($\backslash$sqrtt\_mix$\backslash$sqrt$\backslash$Phi)\$, where $\Phi$ is the conductance and \textsubscriptmix is the mixing time of the network graph. We then show that lacking the network size no Leader Election algorithm can guarantee that the election is final with constant probability, even with unbounded communication. Hence, we further classify the problem as Leader Election (the classic one, requiring knowledge of \$n\$ - as is our first protocol) or Revocable Leader Election, and present a new polynomial time and message complexity Revocable Leader Election algorithm in the setting without knowledge of network size. We analyze time and message complexity of our protocols in the CONGEST model of communication.
2021-12-22
Nascita, Alfredo, Montieri, Antonio, Aceto, Giuseppe, Ciuonzo, Domenico, Persico, Valerio, Pescapè, Antonio.  2021.  Unveiling MIMETIC: Interpreting Deep Learning Traffic Classifiers via XAI Techniques. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :455–460.
The widespread use of powerful mobile devices has deeply affected the mix of traffic traversing both the Internet and enterprise networks (with bring-your-own-device policies). Traffic encryption has become extremely common, and the quick proliferation of mobile apps and their simple distribution and update have created a specifically challenging scenario for traffic classification and its uses, especially network-security related ones. The recent rise of Deep Learning (DL) has responded to this challenge, by providing a solution to the time-consuming and human-limited handcrafted feature design, and better clas-sification performance. The counterpart of the advantages is the lack of interpretability of these black-box approaches, limiting or preventing their adoption in contexts where the reliability of results, or interpretability of polices is necessary. To cope with these limitations, eXplainable Artificial Intelligence (XAI) techniques have seen recent intensive research. Along these lines, our work applies XAI-based techniques (namely, Deep SHAP) to interpret the behavior of a state-of-the-art multimodal DL traffic classifier. As opposed to common results seen in XAI, we aim at a global interpretation, rather than sample-based ones. The results quantify the importance of each modality (payload- or header-based), and of specific subsets of inputs (e.g., TLS SNI and TCP Window Size) in determining the classification outcome, down to per-class (viz. application) level. The analysis is based on a publicly-released recent dataset focused on mobile app traffic.
2021-12-21
Maliszewski, Michal, Boryczka, Urszula.  2021.  Using MajorClust Algorithm for Sandbox-Based ATM Security. 2021 IEEE Congress on Evolutionary Computation (CEC). :1054–1061.
Automated teller machines are affected by two kinds of attacks: physical and logical. It is common for most banks to look for zero-day protection for their devices. The most secure solutions available are based on complex security policies that are extremely hard to configure. The goal of this article is to present a concept of using the modified MajorClust algorithm for generating a sandbox-based security policy based on ATM usage data. The results obtained from the research prove the effectiveness of the used techniques and confirm that it is possible to create a division into sandboxes in an automated way.