Biblio
The recent analysis indicates more than 250,000 people in the United States of America (USA) die every year because of medical errors. World Health Organisation (WHO) reports states that 2.6 million deaths occur due to medical and its prescription errors. Many of the errors related to the wrong drug/dosage administration by caregivers to patients due to indecipherable handwritings, drug interactions, confusing drug names, etc. The espousal of Mobile-based speech recognition applications will eliminate the errors. This allows physicians to narrate the prescription instead of writing. The application can be accessed through smartphones and can be used easily by everyone. An application program interface has been created for handling requests. Natural language processing is used to read text, interpret and determine the important words for generating prescriptions. The patient data is stored and used according to the Health Insurance Portability and Accountability Act of 1996 (HIPAA) guidelines. The SMS4-BSK encryption scheme is used to provide the data transmission securely over Wireless LAN.
The signcryption technique was first proposed by Y. Zheng, where two cryptographic operations digital signature and message encryption are made combinedly. We cryptanalyze the technique and observe that the signature and encryption become vulnerable if the forged public keys are used. This paper proposes an improvement using modified DSS (Digital Signature Standard) version of ElGamal signature and DHP (Diffie-Hellman key exchange protocol), and shows that the vulnerabilities in both the signature and encryption methods used in Zheng's signcryption are circumvented. DHP is used for session symmetric key establishment and it is combined with the signature in such a way that the vulnerabilities of DHP can be avoided. The security and performance analysis of our signcryption technique are provided and found that our scheme is secure and designed using minimum possible operations with comparable computation cost of Zheng's scheme.
Software Defined Networking (SDN) is a networking paradigm that has been very popular due to its advantages over traditional networks with regard to scalability, flexibility, and its ability to solve many security issues. Nevertheless, SDN networks are exposed to new security threats and attacks, especially Distributed Denial of Service (DDoS) attacks. For this aim, we have proposed a model able to detect and mitigate attacks automatically in SDN networks using Machine Learning (ML). Different than other approaches found in literature which use the native flow features only for attack detection, our model extends the native features. The extended flow features are the average flow packet size, the number of flows to the same host as the current flow in the last 5 seconds, and the number of flows to the same host and port as the current flow in the last 5 seconds. Six ML algorithms were evaluated, namely Logistic Regression (LR), Naive Bayes (NB), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). The experiments showed that RF is the best performing ML algorithm. Also, results showed that our model is able to detect attacks accurately and quickly, with a low probability of dropping normal traffic.
Smart meter devices enable a better understanding of the demand at the potential risk of private information leakage. One promising solution to mitigating such risk is to inject noises into the meter data to achieve a certain level of differential privacy. In this paper, we cast one-shot non-intrusive load monitoring (NILM) in the compressive sensing framework, and bridge the gap between theoretical accuracy of NILM inference and differential privacy's parameters. We then derive the valid theoretical bounds to offer insights on how the differential privacy parameters affect the NILM performance. Moreover, we generalize our conclusions by proposing the hierarchical framework to solve the multishot NILM problem. Numerical experiments verify our analytical results and offer better physical insights of differential privacy in various practical scenarios. This also demonstrates the significance of our work for the general privacy preserving mechanism design.
The accessibility of the internet and mobile platforms has risen dramatically due to digital technology innovations. Web applications have opened up a variety of market possibilities by supplying consumers with a wide variety of digital technologies that benefit from high accessibility and functionality. Around the same time, web application protection continues to be an important challenge on the internet, and security must be taken seriously in order to secure confidential data. The threat is caused by inadequate validation of user input information, software developed without strict adherence to safety standards, vulnerability of reusable software libraries, software weakness, and so on. Through abusing a website's vulnerability, introduers are manipulating the user's information in order to exploit it for their own benefit. Then introduers inject their own malicious code, stealing passwords, manipulating user activities, and infringing on customers' privacy. As a result, information is leaked, applications malfunction, confidential data is accessed, etc. To mitigate the aforementioned issues, stacking ensemble based classifier model for Cross-site scripting (XSS) attack detection is proposed. Furthermore, the stacking ensembles technique is used in combination with different machine learning classification algorithms like k-Means, Random Forest and Decision Tree as base-learners to reliably detect XSS attack. Logistic Regression is used as meta-learner to predict the attack with greater accuracy. The classification algorithms in stacking model explore the problem in their own way and its results are given as input to the meta-learner to make final prediction, thus improving the overall detection accuracy of XSS attack in stacking than the individual models. The simulation findings demonstrate that the proposed model detects XSS attack successfully.



