Biblio
Anonymous communication networks (ACNs) are intended to protect the metadata during communication. As classic ACNs, onion mix-nets are famous for strong anonymity, in which the source defines a static path and wraps the message multi-times with the public keys of nodes on the path, through which the message is relayed to the destination. However, onion mix-nets lacks in resilience when the static on-path mixes fail. Mix failure easily results in message loss, communication failure, and even specific attacks. Therefore, it is desirable to achieve resilient routing in onion mix-nets, providing persistent routing capability even though node failure. The state-of-theart solutions mainly adopt mix groups and thus need to share secret keys among all the group members which may cause single point of failure. To address this problem, in this work we propose a hybrid routing approach, which embeds the onion mix-net with hop-by-hop routing to increase routing resilience. Furthermore, we propose the threshold hybrid routing to achieve better key management and avoid single point of failure. As for experimental evaluations, we conduct quantitative analysis of the resilience and realize a local T-hybrid routing prototype to test performance. The experimental results show that our proposed routing strategy increases routing resilience effectively, at the expense of acceptable latency.
Nowadays, the emerging Internet-of-Things (IoT) emphasize the need for the security of network-connected devices. Additionally, there are two types of services in IoT devices that are easily exploited by attackers, weak authentication services (e.g., SSH/Telnet) and exploited services using command injection. Based on this observation, we propose IoTCMal, a hybrid IoT honeypot framework for capturing more comprehensive malicious samples aiming at IoT devices. The key novelty of IoTC-MAL is three-fold: (i) it provides a high-interactive component with common vulnerable service in real IoT device by utilizing traffic forwarding technique; (ii) it also contains a low-interactive component with Telnet/SSH service by running in virtual environment. (iii) Distinct from traditional low-interactive IoT honeypots[1], which only analyze family categories of malicious samples, IoTCMal primarily focuses on homology analysis of malicious samples. We deployed IoTCMal on 36 VPS1 instances distributed in 13 cities of 6 countries. By analyzing the malware binaries captured from IoTCMal, we discover 8 malware families controlled by at least 11 groups of attackers, which mainly launched DDoS attacks and digital currency mining. Among them, about 60% of the captured malicious samples ran in ARM or MIPs architectures, which are widely used in IoT devices.
Android, being the most widespread mobile operating systems is increasingly becoming a target for malware. Malicious apps designed to turn mobile devices into bots that may form part of a larger botnet have become quite common, thus posing a serious threat. This calls for more effective methods to detect botnets on the Android platform. Hence, in this paper, we present a deep learning approach for Android botnet detection based on Convolutional Neural Networks (CNN). Our proposed botnet detection system is implemented as a CNN-based model that is trained on 342 static app features to distinguish between botnet apps and normal apps. The trained botnet detection model was evaluated on a set of 6,802 real applications containing 1,929 botnets from the publicly available ISCX botnet dataset. The results show that our CNN-based approach had the highest overall prediction accuracy compared to other popular machine learning classifiers. Furthermore, the performance results observed from our model were better than those reported in previous studies on machine learning based Android botnet detection.
Network covert timing channel(NCTC) is a process of transmitting hidden information by means of inter-packet delay (IPD) of legitimate network traffic. Their ability to evade traditional security policies makes NCTCs a grave security concern. However, a robust method that can be used to detect a large number of NCTCs is missing. In this paper, a NCTC detection method based on chaos theory and threshold secret sharing is proposed. Our method uses chaos theory to reconstruct a high-dimensional phase space from one-dimensional time series and extract the unique and stable channel traits. Then, a channel identifier is constructed using the secret reconstruction strategy from threshold secret sharing to realize the mapping of the channel features to channel identifiers. Experimental results show that the approach can detect varieties of NCTCs with a guaranteed true positive rate and greatly improve the versatility and robustness.
Language-based information flow control (IFC) aims to provide guarantees about information propagation in computer systems having multiple security levels. Existing IFC systems extend the lattice model of Denning's, enforcing transitive security policies by tracking information flows along with a partially ordered set of security levels. They yield a transitive noninterference property of either confidentiality or integrity. In this paper, we explore IFC for security policies that are not necessarily transitive. Such nontransitive security policies avoid unwanted or unexpected information flows implied by transitive policies and naturally accommodate high-level coarse-grained security requirements in modern component-based software. We present a novel security type system for enforcing nontransitive security policies. Unlike traditional security type systems that verify information propagation by subtyping security levels of a transitive policy, our type system relaxes strong transitivity by inferring information flow history through security levels and ensuring that they respect the nontransitive policy in effect. Such a type system yields a new nontransitive noninterference property that offers more flexible information flow relations induced by security policies that do not have to be transitive, therefore generalizing the conventional transitive noninterference. This enables us to directly reason about the extent of information flows in the program and restrict interactions between security-sensitive and untrusted components.
Despite the latest initiatives and research efforts to increase user privacy in digital scenarios, identity-related cybercrimes such as identity theft, wrong identity or user transactions surveillance are growing. In particular, blanket surveillance that might be potentially accomplished by Identity Providers (IdPs) contradicts the data minimization principle laid out in GDPR. Hence, user movements across Service Providers (SPs) might be tracked by malicious IdPs that become a central dominant entity, as well as a single point of failure in terms of privacy and security, putting users at risk when compromised. To cope with this issue, the OLYMPUS H2020 EU project is devising a truly privacy-preserving, yet user-friendly, and distributed identity management system that addresses the data minimization challenge in both online and offline scenarios. Thus, OLYMPUS divides the role of the IdP among various authorities by relying on threshold cryptography, thereby preventing user impersonation and surveillance from malicious or nosy IdPs. This paper overviews the OLYMPUS framework, including requirements considered, the proposed architecture, a series of use cases as well as the privacy analysis from the legal point of view.
Information security is a process of securing data from security breaches, hackers. The program of intrusion detection is a software framework that keeps tracking and analyzing the data in the network to identify the attacks by using traditional techniques. These traditional intrusion techniques work very efficient when it uses on small data. but when the same techniques used for big data, process of analyzing the data properties take long time and become not efficient and need to use the big data technologies like Apache Spark, Hadoop, Flink etc. to design modern Intrusion Detection System (IDS). In this paper, the design of Apache Spark and classification algorithm-based IDS is presented and employed Chi-square as a feature selection method for selecting the features from network security events data. The performance of Logistic Regression, Decision Tree and SVM is evaluated with SGD in the design of Apache Spark based IDS with AUROC and AUPR used as metrics. Also tabulated the training and testing time of each algorithm and employed NSL-KDD dataset for designing all our experiments.
In recent years, persistent cyber adversaries have developed increasingly sophisticated techniques to evade detection. Once adversaries have established a foothold within the target network, using seemingly-limited passive reconnaissance techniques, they can develop significant network reconnaissance capabilities. Cyber deception has been recognized as a critical capability to defend against such adversaries, but, without an accurate model of the adversary's reconnaissance behavior, current approaches are ineffective against advanced adversaries. To address this gap, we propose a novel model to capture how advanced, stealthy adversaries acquire knowledge about the target network and establish and expand their foothold within the system. This model quantifies the cost and reward, from the adversary's perspective, of compromising and maintaining control over target nodes. We evaluate our model through simulations in the CyberVAN testbed, and indicate how it can guide the development and deployment of future defensive capabilities, including high-interaction honeypots, so as to influence the behavior of adversaries and steer them away from critical resources.
Ultra high frequency (UHF) partial discharge detection technology has been widely used in on-line monitoring of electrical equipment, for the influence factors of UHF signal's transfer function is complicated, the calibration of UHF method is still not realized until now. In order to study the calibration influence factors of UHF partial discharge (PD) detector, the discharge mechanism of typical PD defects is analyzed, and use a PD UHF signal simulator with multiple adjustable parameters to simulate types of PD UHF signals of electrical equipment, then performed the relative experimental research in propagation characteristics and Sensor characteristics of UHF signals. It is concluded that the calibration reliability has big differences between UHF signal energy and discharge capacity of different discharge source. The calibration curve of corona discharge and suspended discharge which can representation the severity of equipment insulation defect more accurate, and the calibration curve of internal air gap discharge and dielectric surface discharge is poorer. The distance of UHF signal energy decays to stable period become smaller with increase of frequency, and the decay of UHF signal energy is irrelevant to its frequencies when the measuring angle is changing. The frequency range of measuring UHF signal depends on effective frequency range of measurement sensor, moreover, the gain and standing-wave ratio of sensor and the energy of the received signal manifested same change trend. Therefore, in order to calibration the UHF signal, it is necessary to comprehensive consideration the specific discharge type and measuring condition. The results provide the favorable reference for a further study to build the calibration system of UHF measuring method, and to promote the effective application of UHF method in sensor characteristic fault diagnosis and insulation evaluation of electrical equipment.
Fully securing networks from remote attacks is recognized by the IT industry as a critical and imposing challenge. Even highly secure systems remain vulnerable to attacks and advanced persistent threats. Air-gapped networks may be secure from remote attack. One-way flows are a novel approach to improving the security of telemetry for critical infrastructure, retaining some of the benefits of interconnectivity whilst maintaining a level of network security analogous to that of unconnected devices. Simple and inexpensive techniques can be used to provide this unidirectional security, removing the risk of remote attack from a range of potential targets and subnets. The application of one-way networks is demonstrated using IEEE compliant PMU data streams as a case study. Scalability is demonstrated using SDN techniques. Finally, these techniques are combined, demonstrating a node which can be secured from remote attack, within defined limitations.