Biblio
{The secure exact-repair regenerating codes are studied, for distributed storage systems with parameters (n
An equivalence was shown between network coding and index coding. The equivalence allows for a network code for any given network-coding instance to be translated to an index code for a suitably constructed index-coding instance, and vice versa. The equivalence also holds for the opposite direction. A secure version of the equivalence in the presence of eavesdroppers was proven for the case where there is no decoding error and no information leakage to the eavesdroppers. For the case of non-zero decoding error and non-zero leakage, three out of the four directions required for an equivalence were proven. This paper proves the last direction, thereby completing the equivalence between secure network coding and secure index coding.
E- Health systems, specifically, Telecare Medical Information Systems (TMIS), are deployed in order to provide patients with specific diseases with healthcare services that are usually based on remote monitoring. Therefore, making an efficient, convenient and secure connection between users and medical servers over insecure channels within medical services is a rather major issue. In this context, because of the biometrics' characteristics, many biometrics-based three factor user authentication schemes have been proposed in the literature to secure user/server communication within medical services. In this paper, we make a brief study of the most interesting proposals. Then, we propose a new three-factor authentication and key agreement scheme for TMIS. Our scheme tends not only to fix the security drawbacks of some studied related work, but also, offers additional significant features while minimizing resource consumption. In addition, we perform a formal verification using the widely accepted formal security verification tool AVISPA to demonstrate that our proposed scheme is secure. Also, our comparative performance analysis reveals that our proposed scheme provides a lower resource consumption compared to other related work's proposals.
Suppose we are given a large number of sequences on a given alphabet, and an adversary is interested in identifying (de-anonymizing) a specific target sequence based on its patterns. Our goal is to thwart such an adversary by obfuscating the target sequences by applying artificial (but small) distortions to its values. A key point here is that we would like to make no assumptions about the statistical model of such sequences. This is in contrast to existing literature where assumptions (e.g., Markov chains) are made regarding such sequences to obtain privacy guarantees. We relate this problem to a set of combinatorial questions on sequence construction based on which we are able to obtain provable guarantees. This problem is relevant to important privacy applications: from fingerprinting webpages visited by users through anonymous communication systems to linking communicating parties on messaging applications to inferring activities of users of IoT devices.
The advent of the Internet of Things (IoT) and Cyber-Physical Systems (CPS) enabled a new class of smart and interactive devices. With their continuous connectivity and their access to valuable information in both the digital and physical world, they are attractive targets for security attackers. Hence, with their integration into both the industry and consumer devices, they added a new surface for cybersecurity attacks. These potential threats call for special care of security vulnerabilities during the design of IoT devices and CPS. The design of secure systems is a complex task, especially if they must adhere to other constraints, such as performance, power consumption, and others. A range of design space exploration tools have been proposed in academics, which aim to support system designers in their task of finding the optimal selection of hardware components and task mappings. Said tools offer a limited way of modeling attack scenarios as constraints for a system under design. The framework proposed in this paper aims at closing this gap, offering system designers a way to consider security attacks and security risks during the early design phase. It offers designers to model security constraints from the view of potential attackers, assessing the probability of successful security attacks and security risk. The framework's feasibility and performance is demonstrated by revisiting a potential system design of an industry partner.
The algorithm of causal anomaly detection in industrial control physics is proposed to determine the normal cloud line of industrial control system so as to accurately detect the anomaly. In this paper, The causal modeling algorithm combining Maximum Information Coefficient and Transfer Entropy was used to construct the causal network among nodes in the system. Then, the abnormal nodes and the propagation path of the anomaly are deduced from the structural changes of the causal network before and after the attack. Finally, an anomaly detection algorithm based on hybrid differential cumulative is used to identify the specific anomaly data in the anomaly node. The stability of causality mining algorithm and the validity of locating causality anomalies are verified by using the data of classical chemical process. Experimental results show that the anomaly detection algorithm is better than the comparison algorithm in accuracy, false negative rate and recall rate, and the anomaly location strategy makes the anomaly source traceable.
Cyber threats directly affect the critical reliability and availability of modern Industry Control Systems (ICS) in respects of operations and processes. Where there are a variety of vulnerabilities and cyber threats, it is necessary to effectively evaluate cyber security risks, and control uncertainties of cyber environments, and quantitative evaluation can be helpful. To effectively and timely control the spread and impact produced by attacks on ICS networks, a probabilistic Multi-Attribute Vulnerability Criticality Analysis (MAVCA) model for impact estimation and prioritised remediation is presented. This offer a new approach for combining three major attributes: vulnerability severities influenced by environmental factors, the attack probabilities relative to the vulnerabilities, and functional dependencies attributed to vulnerability host components. A miniature ICS testbed evaluation illustrates the usability of the model for determining the weakest link and setting security priority in the ICS. This work can help create speedy and proactive security response. The metrics derived in this work can serve as sub-metrics inputs to a larger quantitative security metrics taxonomy; and can be integrated into the security risk assessment scheme of a larger distributed system.
The development in the web technologies given growth to the new application that will make the voting process very easy and proficient. The E-voting helps in providing convenient, capture and count the votes in an election. This project provides the description about e-voting using an Android platform. The proposed e-voting system helps the user to cast the vote without visiting the polling booth. The application provides authentication measures in order to avoid fraud voters using the OTP. Once the voting process is finished the results will be available within a fraction of seconds. All the casted vote count is encrypted using AES256 algorithm and stored in the database in order to avoid any outbreaks and revelation of results by third person other than the administrator.