Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2020-02-17
Chalise, Batu K..  2019.  ADMM-based Beamforming Optimization for Physical Layer Security in a Full-duplex Relay System. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :4734–4738.
Although beamforming optimization problems in full-duplex communication systems can be optimally solved with the semidefinite relaxation (SDR) approach, its computational complexity increases rapidly when the problem size increases. In order to circumvent this issue, in this paper, we propose an alternating direction of multiplier method (ADMM) which minimizes the augmented Lagrangian of the dual of the SDR and handles the inequality constraints with the use of slack variables. The proposed ADMM is then applied for optimizing the relay beamformer to maximize the secrecy rate. Simulation results show that the proposed ADMM performs as good as the SDR approach.
2020-07-03
Adari, Suman Kalyan, Garcia, Washington, Butler, Kevin.  2019.  Adversarial Video Captioning. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :24—27.
In recent years, developments in the field of computer vision have allowed deep learning-based techniques to surpass human-level performance. However, these advances have also culminated in the advent of adversarial machine learning techniques, capable of launching targeted image captioning attacks that easily fool deep learning models. Although attacks in the image domain are well studied, little work has been done in the video domain. In this paper, we show it is possible to extend prior attacks in the image domain to the video captioning task, without heavily affecting the video's playback quality. We demonstrate our attack against a state-of-the-art video captioning model, by extending a prior image captioning attack known as Show and Fool. To the best of our knowledge, this is the first successful method for targeted attacks against a video captioning model, which is able to inject 'subliminal' perturbations into the video stream, and force the model to output a chosen caption with up to 0.981 cosine similarity, achieving near-perfect similarity to chosen target captions.
2020-05-18
Sharma, Sarika, Kumar, Deepak.  2019.  Agile Release Planning Using Natural Language Processing Algorithm. 2019 Amity International Conference on Artificial Intelligence (AICAI). :934–938.
Once the requirement is gathered in agile, it is broken down into smaller pre-defined format called user stories. These user stories are then scoped in various sprint releases and delivered accordingly. Release planning in Agile becomes challenging when the number of user stories goes up in hundreds. In such scenarios it is very difficult to manually identify similar user stories and package them together into a release. Hence, this paper suggests application of natural language processing algorithms for identifying similar user stories and then scoping them into a release This paper takes the approach to build a word corpus for every project release identified in the project and then to convert the provided user stories into a vector of string using Java utility for calculating top 3 most occurring words from the given project corpus in a user story. Once all the user stories are represented as vector array then by using RV coefficient NLP algorithm the user stories are clustered into various releases of the software project. Using the proposed approach, the release planning for large and complex software engineering projects can be simplified resulting into efficient planning in less time. The automated commercial tools like JIRA and Rally can be enhanced to include suggested algorithms for managing release planning in Agile.
2020-04-24
Tuttle, Michael, Wicker, Braden, Poshtan, Majid, Callenes, Joseph.  2019.  Algorithmic Approaches to Characterizing Power Flow Cyber-Attack Vulnerabilities. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
As power grid control systems become increasingly automated and distributed, security has become a significant design concern. Systems increasingly expose new avenues, at a variety of levels, for attackers to exploit and enable widespread disruptions and/or surveillance. Much prior work has explored the implications of attack models focused on false data injection at the front-end of the control system (i.e. during state estimation) [1]. Instead, in this paper we focus on characterizing the inherent cyber-attack vulnerabilities with power flow. Power flow (and power flow constraints) are at the core of many applications critical to operation of power grids (e.g. state estimation, economic dispatch, contingency analysis, etc.). We propose two algorithmic approaches for characterizing the vulnerability of buses within power grids to cyber-attacks. Specifically, we focus on measuring the instability of power flow to attacks which manifest as either voltage or power related errors. Our results show that attacks manifesting as voltage errors are an order of magnitude more likely to cause instability than attacks manifesting as power related errors (and 5x more likely for state estimation as compared to power flow).
2020-02-17
de Andrade Bragagnolle, Thiago, Pereira Nogueira, Marcelo, de Oliveira Santos, Melissa, do Prado, Afonso José, Ferreira, André Alves, de Mello Fagotto, Eric Alberto, Aldaya, Ivan, Abbade, Marcelo Luís Francisco.  2019.  All-Optical Spectral Shuffling of Signals Traveling through Different Optical Routes. 2019 21st International Conference on Transparent Optical Networks (ICTON). :1–4.
A recent proposed physical layer encryption technique uses an all-optical setup based on spatial light modulators to split two or more wavelength division multiplexed (WDM) signals in several spectral slices and to shuffle these slices. As a result, eavesdroppers aimed to recover information from a single target signal need to handle all the signals involved in the shuffling process. In this work, computer simulations are used to analyse the case where the shuffled signals propagate through different optical routes. From a security point of view, this is an interesting possibility because it obliges eavesdroppers to tap different optical fibres/ cables. On the other hand, each shuffled signal experiences different physical impairments and the deleterious consequences of these effects must be carefully investigated. Our results indicate that, in a metropolitan area network environment, penalties caused by attenuation and dispersion differences may be easily compensated with digital signal processing algorithms that are presently deployed.
2020-04-13
Cai, Yang, Wang, Yuewu, Lei, Lingguang, Zhou, Quan.  2019.  ALTEE: Constructing Trustworthy Execution Environment for Mobile App Dynamically. 2019 IEEE Symposium on Computers and Communications (ISCC). :1–7.
TEE(Trusted Execution Environment) has became one of the most popular security features for mobile platforms. Current TEE solutions usually implement secure functions in Trusted applications (TA) running over a trusted OS in the secure world. Host App may access these secure functions through the TEE driver. Unfortunately, such architecture is not very secure. A trusted OS has to be loaded in secure world to support TA running. Thus, the code size in secure world became large. As more and more TA is installed, the secure code size will be further larger and larger. Lots of real attack case have been reported [1]. In this paper, we present a novel TEE constructing method named ALTEE. Different from existing TEE solutions, ALTEE includes secure code in host app, and constructs a trustworthy execution environment for it dynamically whenever the code needs to be run.
2020-08-10
Mansour, Ahmad, Malik, Khalid M., Kaso, Niko.  2019.  AMOUN: Lightweight Scalable Multi-recipient Asymmetric Cryptographic Scheme. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0838–0846.
Securing multi-party communication is very challenging particularly in dynamic networks. Existing multi-recipient cryptographic schemes pose variety of limitations. These include: requiring trust among all recipients to make an agreement, high computational cost for both encryption and decryption, and additional communication overhead when group membership changes. To overcome these limitations, this paper introduces a novel multi-recipient asymmetric cryptographic scheme, AMOUN. This scheme enables the sender to possibly send different messages in one ciphertext to multiple recipients to better utilize network resources, while ensuring that each recipient only retrieves its own designated message. Security analysis demonstrates that proposed scheme is secure against well-known attacks. Evaluation results demonstrate that lightweight AMOUN outperforms RSA and Multi-RSA in terms of computational cost for both encryption and decryption. For a given prime size, in case of encryption, AMOUN achieves 86% and 98% lower average computational cost than RSA and Multi-RSA, respectively; while for decryption, it shows performance improvement of 98% compared to RSA and Multi-RSA.
2020-07-06
Cerotti, D., Codetta-Raiteri, D., Egidi, L., Franceschinis, G., Portinale, L., Dondossola, G., Terruggia, R..  2019.  Analysis and Detection of Cyber Attack Processes targeting Smart Grids. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1–5.
This paper proposes an approach based on Bayesian Networks to support cyber security analysts in improving the cyber-security posture of the smart grid. We build a system model that exploits real world context information from both Information and Operational Technology environments in the smart grid, and we use it to demonstrate sample predictive and diagnostic analyses. The innovative contribution of this work is in the methodology capability of capturing the many dependencies involved in the assessment of security threats, and of supporting the security analysts in planning defense and detection mechanisms for energy digital infrastructures.
2020-08-17
Musa, Tanvirali, Yeo, Kheng Cher, Azam, Sami, Shanmugam, Bharanidharan, Karim, Asif, Boer, Friso De, Nur, Fernaz Narin, Faisal, Fahad.  2019.  Analysis of Complex Networks for Security Issues using Attack Graph. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1–6.
Organizations perform security analysis for assessing network health and safe-guarding their growing networks through Vulnerability Assessments (AKA VA Scans). The output of VA scans is reports on individual hosts and its vulnerabilities, which, are of little use as the origin of the attack can't be located from these. Attack Graphs, generated without an in-depth analysis of the VA reports, are used to fill in these gaps, but only provide cursory information. This study presents an effective model of depicting the devices and the data flow that efficiently identifies the weakest nodes along with the concerned vulnerability's origin.The complexity of the attach graph using MulVal has been greatly reduced using the proposed approach of using the risk and CVSS base score as evaluation criteria. This makes it easier for the user to interpret the attack graphs and thus reduce the time taken needed to identify the attack paths and where the attack originates from.
2020-11-20
Dung, L. T., Tran, H. T. K., Hoa, N. T. T., Choi, S..  2019.  Analysis of Local Secure Connectivity of Legitimate User in Stochastic Wireless Networks. 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom). :155—159.
In this paper, we investigate the local secure connectivity in terms of the probability of existing a secure wireless connection between two legitimate users and the isolated security probability of a legitimate user in stochastic wireless networks. Specifically, the closed-form expressions of the probability that there is a secure wireless communication between two legitimate users are derived first. Then, based on these equations, the corresponding isolated secure probability are given. The characteristics of local secure connectivity are examined in four scenarios combined from two wireless channel conditions (deterministic/Rayleigh fading) and two eavesdropper configurations (non-colluding/colluding). All the derived mathematical equations are validated by the Monte-Carlo simulation. The obtained numerical results in this paper reveal some interesting features of the impact of eavesdropper collusion, wireless channel fading, and density ratio on the secure connection probability and the isolated security probability of legitimate user in stochastic networks.
2020-03-23
Hyunki-Kim, Jinhyeok-Oh, Changuk-Jang, Okyeon-Yi, Juhong-Han, Hansaem-Wi, Chanil-Park.  2019.  Analysis of the Noise Source Entropy Used in OpenSSL’s Random Number Generation Mechanism. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :59–62.
OpenSSL is an open source library that implements the Secure Socket Layer (SSL), a security protocol used by the TCP/IP layer. All cryptographic systems require random number generation for many reasons, such as cryptographic key generation and protocol challenge/response, OpenSSL is also the same. OpenSSL can be run on a variety of operating systems. especially when generating random numbers on Unix-like operating systems, it can use /dev /(u)random [6], as a seed to add randomness. In this paper, we analyze the process provided by OpenSSL when random number generation is required. We also provide considerations for application developers and OpenSSL users to use /dev/urandom and real-time clock (nanoseconds of timespec structure) as a seed to generate cryptographic random numbers in the Unix family.
2020-09-04
Sevier, Seth, Tekeoglu, Ali.  2019.  Analyzing the Security of Bluetooth Low Energy. 2019 International Conference on Electronics, Information, and Communication (ICEIC). :1—5.
Internet of Things devices have spread to near ubiquity this decade. All around us now lies an invisible mesh of communication from devices embedded in seemingly everything. Inevitably some of that communication flying around our heads will contain data that must be protected or otherwise shielded from tampering. The responsibility to protect this sensitive information from malicious actors as it travels through the air then falls upon the standards used to communicate this data. Bluetooth Low Energy (BLE) is one of these standards, the aim of this paper is to put its security standards to test. By attempting to exploit its vulnerabilities we can see how secure this standard really is. In this paper, we present steps for analyzing the security of BLE devices using open-source hardware and software.
2020-08-10
Zhang, Xinman, He, Tingting, Xu, Xuebin.  2019.  Android-Based Smartphone Authentication System Using Biometric Techniques: A Review. 2019 4th International Conference on Control, Robotics and Cybernetics (CRC). :104–108.
As the technological progress of mobile Internet, smartphone based on Android OS accounts for the vast majority of market share. The traditional encryption technology cannot resolve the dilemma in smartphone information leakage, and the Android-based authentication system in view of biometric recognition emerge to offer more reliable information assurance. In this paper, we summarize several biometrics providing their attributes. Furthermore, we also review the algorithmic framework and performance index acting on authentication techniques. Thus, typical identity authentication systems including their experimental results are concluded and analyzed in the survey. The article is written with an intention to provide an in-depth overview of Android-based biometric verification systems to the readers.
2020-03-02
Arifeen, Md Murshedul, Islam, Al Amin, Rahman, Md Mustafizur, Taher, Kazi Abu, Islam, Md.Maynul, Kaiser, M Shamim.  2019.  ANFIS based Trust Management Model to Enhance Location Privacy in Underwater Wireless Sensor Networks. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). :1–6.
Trust management is a promising alternative solution to different complex security algorithms for Underwater Wireless Sensor Networks (UWSN) applications due to its several resource constraint behaviour. In this work, we have proposed a trust management model to improve location privacy of the UWSN. Adaptive Neuro Fuzzy Inference System (ANFIS) has been exploited to evaluate trustworthiness of a sensor node. Also Markov Decision Process (MDP) has been considered. At each state of the MDP, a sensor node evaluates trust behaviour of forwarding node utilizing the FIS learning rules and selects a trusted node. Simulation has been conducted in MATLAB and simulation results show that the detection accuracy of trustworthiness is 91.2% which is greater than Knowledge Discovery and Data Mining (KDD) 99 intrusion detection based dataset. So, in our model 91.2% trustworthiness is necessary to be a trusted node otherwise it will be treated as a malicious or compromised node. Our proposed model can successfully eliminate the possibility of occurring any compromised or malicious node in the network.
2020-04-13
M.R., Anala, Makker, Malika, Ashok, Aakanksha.  2019.  Anomaly Detection in Surveillance Videos. 2019 26th International Conference on High Performance Computing, Data and Analytics Workshop (HiPCW). :93–98.
Every public or private area today is preferred to be under surveillance to ensure high levels of security. Since the surveillance happens round the clock, data gathered as a result is huge and requires a lot of manual work to go through every second of the recorded videos. This paper presents a system which can detect anomalous behaviors and alarm the user on the type of anomalous behavior. Since there are a myriad of anomalies, the classification of anomalies had to be narrowed down. There are certain anomalies which are generally seen and have a huge impact on public safety, such as explosions, road accidents, assault, shooting, etc. To narrow down the variations, this system can detect explosion, road accidents, shooting, and fighting and even output the frame of their occurrence. The model has been trained with videos belonging to these classes. The dataset used is UCF Crime dataset. Learning patterns from videos requires the learning of both spatial and temporal features. Convolutional Neural Networks (CNN) extract spatial features and Long Short-Term Memory (LSTM) networks learn the sequences. The classification, using an CNN-LSTM model achieves an accuracy of 85%.
2020-11-23
Ramapatruni, S., Narayanan, S. N., Mittal, S., Joshi, A., Joshi, K..  2019.  Anomaly Detection Models for Smart Home Security. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :19–24.
Recent years have seen significant growth in the adoption of smart homes devices. These devices provide convenience, security, and energy efficiency to users. For example, smart security cameras can detect unauthorized movements, and smoke sensors can detect potential fire accidents. However, many recent examples have shown that they open up a new cyber threat surface. There have been several recent examples of smart devices being hacked for privacy violations and also misused so as to perform DDoS attacks. In this paper, we explore the application of big data and machine learning to identify anomalous activities that can occur in a smart home environment. A Hidden Markov Model (HMM) is trained on network level sensor data, created from a test bed with multiple sensors and smart devices. The generated HMM model is shown to achieve an accuracy of 97% in identifying potential anomalies that indicate attacks. We present our approach to build this model and compare with other techniques available in the literature.
2020-07-20
Boumiza, Safa, Braham, Rafik.  2019.  An Anomaly Detector for CAN Bus Networks in Autonomous Cars based on Neural Networks. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–6.
The domain of securing in-vehicle networks has attracted both academic and industrial researchers due to high danger of attacks on drivers and passengers. While securing wired and wireless interfaces is important to defend against these threats, detecting attacks is still the critical phase to construct a robust secure system. There are only a few results on securing communication inside vehicles using anomaly-detection techniques despite their efficiencies in systems that need real-time detection. Therefore, we propose an intrusion detection system (IDS) based on Multi-Layer Perceptron (MLP) neural network for Controller Area Networks (CAN) bus. This IDS divides data according to the ID field of CAN packets using K-means clustering algorithm, then it extracts suitable features and uses them to train and construct the neural network. The proposed IDS works for each ID separately and finally it combines their individual decisions to construct the final score and generates alert in the presence of attack. The strength of our intrusion detection method is that it works simultaneously for two types of attacks which will eliminate the use of several separate IDS and thus reduce the complexity and cost of implementation.
2020-08-13
Aktaş, Mehmet Fatih, Soljanin, Emina.  2019.  Anonymity Mixes as (Partial) Assembly Queues: Modeling and Analysis. 2019 IEEE Information Theory Workshop (ITW). :1—5.
Anonymity platforms route the traffic over a network of special routers that are known as mixes and implement various traffic disruption techniques to hide the communicating users' identities. Batch mixes in particular anonymize communicating peers by allowing message exchange to take place only after a sufficient number of messages (a batch) accumulate, thus introducing delay. We introduce a queueing model for batch mix and study its delay properties. Our analysis shows that delay of a batch mix grows quickly as the batch size gets close to the number of senders connected to the mix. We then propose a randomized batch mixing strategy and show that it achieves much better delay scaling in terms of the batch size. However, randomization is shown to reduce the anonymity preserving capabilities of the mix. We also observe that queueing models are particularly useful to study anonymity metrics that are more practically relevant such as the time-to-deanonymize metric.
Fan, Chun-I, Tseng, Yi-Fan, Cheng, Chen-Hsi, Kuo, Hsin-Nan, Huang, Jheng-Jia, Shih, Yu-Tse.  2019.  Anonymous Authentication and Key Agreement Protocol for LTE Networks. 2019 2nd International Conference on Communication Engineering and Technology (ICCET). :68—71.
In 2008, 3GPP proposed the Long Term Evolution (LTE) in version 8. The standard is used in high-speed wireless communication standard for mobile terminal in telecommunication. It supports subscribers to access internet via specific base station after authentication. These authentication processes were defined in standard TS33.401 and TS33.102 by 3GPP. Authenticated processing standard inherits the authentication and key agreement protocol in RFC3310 and has been changed into authenticated scheme suitable for LTE. In the origin LTE authenticated scheme, subscribers need to transfer its International Mobile Subscriber Identity (IMSI) with plaintext. The IMSI might be intercepted and traced by fake stations. In this work, we propose a new scheme with a pseudo IMSI so that fake stations cannot get the real IMSI and trace the subscriber. The subscriber can keep anonymous and be confirmed by the base station for the legality. The pseudo identity is unlinkable to the subscriber. Not only does the proposed scheme enhance the security but also it just has some extra costs for signature generation and verification as compared to the original scheme.
2020-07-13
Mahmood, Shah.  2019.  The Anti-Data-Mining (ADM) Framework - Better Privacy on Online Social Networks and Beyond. 2019 IEEE International Conference on Big Data (Big Data). :5780–5788.
The unprecedented and enormous growth of cloud computing, especially online social networks, has resulted in numerous incidents of the loss of users' privacy. In this paper, we provide a framework, based on our anti-data-mining (ADM) principle, to enhance users' privacy against adversaries including: online social networks; search engines; financial terminal providers; ad networks; eavesdropping governments; and other parties who can monitor users' content from the point where the content leaves users' computers to within the data centers of these information accumulators. To achieve this goal, our framework proactively uses the principles of suppression of sensitive data and disinformation. Moreover, we use social-bots in a novel way for enhanced privacy and provide users' with plausible deniability for their photos, audio, and video content uploaded online.
2020-08-10
Onaolapo, A.K., Akindeji, K.T..  2019.  Application of Artificial Neural Network for Fault Recognition and Classification in Distribution Network. 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA). :299–304.
Occurrence of faults in power systems is unavoidable but their timely recognition and location enhances the reliability and security of supply; thereby resulting in economic gain to consumers and power utility alike. Distribution Network (DN) is made smarter by the introduction of sensors and computers into the system. In this paper, detection and classification of faults in DN using Artificial Neural Network (ANN) is emphasized. This is achieved through the employment of Back Propagation Algorithm (BPA) of the Feed Forward Neural Network (FFNN) using three phase voltages and currents as inputs. The simulations were carried out using the MATLAB® 2017a. ANN with various hidden layers were analyzed and the results authenticate the effectiveness of the method.
2020-09-08
Wang, Meng, Zhan, Ming, Yu, Kan, Deng, Yi, Shi, Yaqin, Zeng, Jie.  2019.  Application of Bit Interleaving to Convolutional Codes for Short Packet Transmission. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :425–429.
In recent years, the demand for high reliability in industrial wireless communication has been increasing. To meet the strict requirement, many researchers have studied various bit interleaving coding schemes for long packet transmission in industrial wireless networks. Current research shows that the use of bit interleaving structure can improve the performance of the communication system for long packet transmission, but to improve reliability of industrial wireless communications by combining the bit interleaving and channel coding for short packets still requires further analysis. With this aim, bit interleaving structure is applied to convolution code coding scheme for short packet transmission in this paper. We prove that the use of interleaver fail to improve the reliability of data transmission under the circumstance of short packet transmission.
2020-07-13
Ghosh, Debanjana, Chatterjee, Soumyajit, Kothari, Vasudha, Kumar, Aakash, Nair, Mahesh, Lokesh, Ella.  2019.  An application of Li-Fi based Wireless Communication System using Visible Light Communication. 2019 International Conference on Opto-Electronics and Applied Optics (Optronix). :1–3.
This paper attempts to clarify the concept and applications of Li-Fi technology. The current Wi-Fi network use Radio Frequency waves, but the usage of the available RF spectrum is limited. Therefore a new technology, Li-Fi has come into picture. Li-Fi is a recently developed technology. This paper explains how array of LEDs are used to transmit data in the visible light spectrum. This technology has advantages like security, increased accessible spectrum, low latency efficiency and much higher speed as compared to Wi- Fi. The aim of this research paper is to design a Li-Fi transceiver using Arduino which is able to transmit and receive data in binary format. The software coding is done in Arduino- Uno platform. Successful transmission and reception of data(alphanumeric) has been done.
2020-06-26
Nath, Anubhav, Biswas, Reetam Sen, Pal, Anamitra.  2019.  Application of Machine Learning for Online Dynamic Security Assessment in Presence of System Variability and Additive Instrumentation Errors. 2019 North American Power Symposium (NAPS). :1—6.
Large-scale blackouts that have occurred in the past few decades have necessitated the need to do extensive research in the field of grid security assessment. With the aid of synchrophasor technology, which uses phasor measurement unit (PMU) data, dynamic security assessment (DSA) can be performed online. However, existing applications of DSA are challenged by variability in system conditions and unaccounted for measurement errors. To overcome these challenges, this research develops a DSA scheme to provide security prediction in real-time for load profiles of different seasons in presence of realistic errors in the PMU measurements. The major contributions of this paper are: (1) develop a DSA scheme based on PMU data, (2) consider seasonal load profiles, (3) account for varying penetrations of renewable generation, and (4) compare the accuracy of different machine learning (ML) algorithms for DSA with and without erroneous measurements. The performance of this approach is tested on the IEEE-118 bus system. Comparative analysis of the accuracies of the ML algorithms under different operating scenarios highlights the importance of considering realistic errors and variability in system conditions while creating a DSA scheme.
2020-09-11
ALEKSIEVA, Yulia, VALCHANOV, Hristo, ALEKSIEVA, Veneta.  2019.  An approach for host based botnet detection system. 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA). :1—4.
Most serious occurrence of modern malware is Botnet. Botnet is a rapidly evolving problem that is still not well understood and studied. One of the main goals for modern network security is to create adequate techniques for the detection and eventual termination of Botnet threats. The article presents an approach for implementing a host-based Intrusion Detection System for Botnet attack detection. The approach is based on a variation of a genetic algorithm to detect anomalies in a case of attacks. An implementation of the approach and experimental results are presented.