Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2022-02-22
Olivier, Stephen L., Ellingwood, Nathan D., Berry, Jonathan, Dunlavy, Daniel M..  2021.  Performance Portability of an SpMV Kernel Across Scientific Computing and Data Science Applications. 2021 IEEE High Performance Extreme Computing Conference (HPEC). :1—8.
Both the data science and scientific computing communities are embracing GPU acceleration for their most demanding workloads. For scientific computing applications, the massive volume of code and diversity of hardware platforms at supercomputing centers has motivated a strong effort toward performance portability. This property of a program, denoting its ability to perform well on multiple architectures and varied datasets, is heavily dependent on the choice of parallel programming model and which features of the programming model are used. In this paper, we evaluate performance portability in the context of a data science workload in contrast to a scientific computing workload, evaluating the same sparse matrix kernel on both. Among our implementations of the kernel in different performance-portable programming models, we find that many struggle to consistently achieve performance improvements using the GPU compared to simple one-line OpenMP parallelization on high-end multicore CPUs. We show one that does, and its performance approaches and sometimes even matches that of vendor-provided GPU math libraries.
2022-05-05
Li, Luo, Li, Wen, Li, Xing.  2021.  A Power Grid Planning Method Considering Dynamic Limit of Renewable Energy Security Constraints. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). :1101—1105.

This paper puts forward a dynamic reduction method of renewable energy based on N-1 safety standard of power system, which is suitable for high-voltage distribution network and can reduce the abandoned amount of renewable energy to an ideal level. On the basis of AC sensitivity coefficient, the optimization method of distribution factor suitable for single line or multi-line disconnection is proposed. Finally, taking an actual high-voltage distribution network in Germany as an example, the simulation results show that the proposed method can effectively limit the line load, and can greatly reduce the line load with less RES reduction.

2022-08-12
Choi, Heeyoung, Young, Kang Ju.  2021.  Practical Approach of Security Enhancement Method based on the Protection Motivation Theory. 2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter). :96—97.

In order to strengthen information security, practical solutions to reduce information security stress are needed because the motivation of the members of the organization who use it is needed to work properly. Therefore, this study attempts to suggest the key factors that can enhance security while reducing the information security stress of organization members. To this end, based on the theory of protection motivation, trust and security stress in information security policies are set as mediating factors to explain changes in security reinforcement behavior, and risk, efficacy, and reaction costs of cyberattacks are considered as prerequisites. Our study suggests a solution to the security reinforcement problem by analyzing the factors that influence the behavior of organization members that can raise the protection motivation of the organization members.

2022-02-25
Nguyen, Quang-Linh, Flottes, Marie-Lise, Dupuis, Sophie, Rouzeyre, Bruno.  2021.  On Preventing SAT Attack with Decoy Key-Inputs. 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :114–119.

The globalized supply chain in the semiconductor industry raises several security concerns such as IC overproduction, intellectual property piracy and design tampering. Logic locking has emerged as a Design-for-Trust countermeasure to address these issues. Original logic locking proposals provide a high degree of output corruption – i.e., errors on circuit outputs – unless it is unlocked with the correct key. This is a prerequisite for making a manufactured circuit unusable without the designer’s intervention. Since the introduction of SAT-based attacks – highly efficient attacks for retrieving the correct key from an oracle and the corresponding locked design – resulting design-based countermeasures have compromised output corruption for the benefit of better resilience against such attacks. Our proposed logic locking scheme, referred to as SKG-Lock, aims to thwart SAT-based attacks while maintaining significant output corruption. The proposed provable SAT-resilience scheme is based on the novel concept of decoy key-inputs. Compared with recent related works, SKG-Lock provides higher output corruption, while having high resistance to evaluated attacks.

2022-03-22
Gupta, Ambika, Agarwal, Anubhav, Rao, Deepika, Harshit, Bansal, Rashi.  2021.  Prompt and Secure Data Storage and Recovery System. 2021 5th International Conference on Information Systems and Computer Networks (ISCON). :1—4.

Cloud computing has included an essential part of its industry and statistics garage is the main service provided, where a huge amount of data can be stored in a virtual server. Storing data in public platforms may be vulnerable to threats. Consequently, the obligation of secure usage and holistic backup of statistics falls upon the corporation providers. Subsequently, an affordable and compliant mechanism of records auditing that permits groups to audit the facts stored in shared clouds whilst acting quick and trouble- unfastened healing might be a fairly sought-after cloud computing task concept. There is a lot of advantage in growing this domain and there is considerable precedence to follow from the examples of dropbox, google power among others.

2022-09-09
Hadi, Ameer Khadim, Salem, Shahad.  2021.  A proposed methodology to use a Block-chain in Supply Chain Traceability. 2021 4th International Iraqi Conference on Engineering Technology and Their Applications (IICETA). :313—317.

Increasing consumer experience and companies inner quality presents a direct demand of different requirements on supply chain traceability. Typically, existing solutions have separate data storages which eventually provide limited support when multiple individuals are included. Therefore, the block-chain-based methods are utilized to defeat these deficiencies by generating digital illustrations of real products to following several objects at the same time. Nevertheless, they actually cannot identify the change of products in manufacturing methods. The connection between components included in the production decreased, whereby the ability to follow a product’s origin reduced consequently. In this paper, a methodology is recommended which involves using a Block-chain in Supply Chain Traceability, to solve the issues of manipulations and changes in data and product source. The method aims to improve the product’s origin transparency. Block-chain technology produces a specific method of storing data into a ledger, which is raised on many end-devices such as servers or computers. Unlike centralized systems, the records of the present system are encrypted and make it difficult to be manipulated. Accordingly, this method manages the product’s traceability changes. The recommended system is performed for the cheese supply chain. The result were found to be significant in terms of increasing food security and distributors competition.

2022-01-31
Liu, Yong, Zhu, Xinghua, Wang, Jianzong, Xiao, Jing.  2021.  A Quantitative Metric for Privacy Leakage in Federated Learning. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3065–3069.
In the federated learning system, parameter gradients are shared among participants and the central modulator, while the original data never leave their protected source domain. However, the gradient itself might carry enough information for precise inference of the original data. By reporting their parameter gradients to the central server, client datasets are exposed to inference attacks from adversaries. In this paper, we propose a quantitative metric based on mutual information for clients to evaluate the potential risk of information leakage in their gradients. Mutual information has received increasing attention in the machine learning and data mining community over the past few years. However, existing mutual information estimation methods cannot handle high-dimensional variables. In this paper, we propose a novel method to approximate the mutual information between the high-dimensional gradients and batched input data. Experimental results show that the proposed metric reliably reflect the extent of information leakage in federated learning. In addition, using the proposed metric, we investigate the influential factors of risk level. It is proven that, the risk of information leakage is related to the status of the task model, as well as the inherent data distribution.
2022-05-05
Wang, Qibing, Du, Xin, Zhang, Kai, Pan, Junjun, Yu, Weiguo, Gao, Xiaoquan, Lin, Rihong.  2021.  Reliability Test Method of Power Grid Security Control System Based on BP Neural Network and Dynamic Group Simulation. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia). :680—685.

Aiming at the problems of imperfect dynamic verification of power grid security and stability control strategy and high test cost, a reliability test method of power grid security control system based on BP neural network and dynamic group simulation is proposed. Firstly, the fault simulation results of real-time digital simulation system (RTDS) software are taken as the data source, and the dynamic test data are obtained with the help of the existing dispatching data network, wireless virtual private network, global positioning system and other communication resources; Secondly, the important test items are selected through the minimum redundancy maximum correlation algorithm, and the test items are used to form a feature set, and then the BP neural network model is used to predict the test results. Finally, the dynamic remote test platform is tested by the dynamic whole group simulation of the security and stability control system. Compared with the traditional test methods, the proposed method reduces the test cost by more than 50%. Experimental results show that the proposed method can effectively complete the reliability test of power grid security control system based on dynamic group simulation, and reduce the test cost.

2022-09-09
Li, Zhihong.  2021.  Remolding of the Supply Chain Development Mode Based on the Block Chain Technology. 2021 International Conference on Computer, Blockchain and Financial Development (CBFD). :392—395.

The supply chain has been much developed with the internet technology being used in the business world. Some issues are becoming more and more evident than before in the course of the fast evolution of the supply chain. Among these issues, the remarkable problems include low efficiency of communication, insufficient operational outcomes and lack of the credit among the participants in the whole chain. The main reasons to cause these problems lie in the isolated information unable to be traced and in the unclear responsibility, etc. In recent years, the block chain technology has been growing fast. Being decentralized, traceable and unable to be distorted, the block chain technology is well suitable for solving the problems existing in the supply chain. Therefore, the paper first exposes the traditional supply chain mode and the actual situation of the supply chain management. Then it explains the block chain technology and explores the application & effects of the block chain technology in the traditional supply chain. Next, a supply chain style is designed on the base of the block chain technology. Finally the potential benefits of the remolded supply chain are foreseen if it is applied in the business field.

2022-01-10
Jianhua, Xing, Jing, Si, Yongjing, Zhang, Wei, Li, Yuning, Zheng.  2021.  Research on Malware Variant Detection Method Based on Deep Neural Network. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :144–147.
To deal with the increasingly serious threat of industrial information malicious code, the simulations and characteristics of the domestic security and controllable operating system and office software were implemented in the virtual sandbox environment based on virtualization technology in this study. Firstly, the serialization detection scheme based on the convolution neural network algorithm was improved. Then, the API sequence was modeled and analyzed by the improved convolution neural network algorithm to excavate more local related information of variant sequences. Finally the variant detection of malicious code was realized. Results showed that this improved method had higher efficiency and accuracy for a large number of malicious code detection, and could be applied to the malicious code detection in security and controllable operating system.
2022-02-25
Jaigirdar, Fariha Tasmin, Rudolph, Carsten, Bain, Chris.  2021.  Risk and Compliance in IoT- Health Data Propagation: A Security-Aware Provenance based Approach. 2021 IEEE International Conference on Digital Health (ICDH). :27–37.
Data generated from various dynamic applications of Internet of Things (IoT) based healthcare technology is effectively used for decision-making, providing reliable and smart healthcare services to the elderly and patients with chronic diseases. Since these precious data are susceptible to various security attacks, continuous monitoring of the system's compliance and identification of security risks in IoT data propagation is essential through potentially several layers of applications. This paper pinpoints how security-aware data provenance graphs can support compliance checking and risk estimation by including sufficient information on security controls and other security-relevant evidence. Real-time analysis of these security evidence to enable a step-wise validation and providing the evidence of this validation to end-users is currently not possible with the available data. This paper analyzes the security concerns in different phases of data propagation in a designed IoT-health scenario and promotes step-wise validation of security evidence. It proposes a system model with a novel protocol that documents and verifies evidence for security controls for data-object relations in data provenance graphs to assist compliance checking of security regulation of healthcare systems. With this regard, this paper discusses the proposed system model design with the requirements for technical safeguards of the Health Insurance Portability and Accountability Act (HIPAA). Based on the verification output at each phase, the proposed protocol reports this chain of verification by creating certain security tokens. Finally, the paper provides a formal security validation and security design analysis to show the applicability of this step-wise validation within the proposed system model.
2022-01-10
Allagi, Shridhar, Rachh, Rashmi, Anami, Basavaraj.  2021.  A Robust Support Vector Machine Based Auto-Encoder for DoS Attacks Identification in Computer Networks. 2021 International Conference on Intelligent Technologies (CONIT). :1–6.
An unprecedented upsurge in the number of cyberattacks and threats is the corollary of ubiquitous internet connectivity. Among a variety of threats and attacks, Denial of Service (DoS) attacks are crucial and conventional mechanisms currently being used for detection/ identification of these attacks are not adequate. The use of real-time and robust mechanisms is the way to handle this. Machine learning-based techniques have been extensively used for this in the recent past. In this paper, a robust mechanism using Support Vector Machine Based Auto-Encoder is proposed for identifying DoS attacks. The proposed technique is tested on the CICIDS dataset and has given 99.32 % accuracy for DoS attacks. To study the effect of the number of features on the performance of the technique, a discriminant component analysis is deployed for feature reduction and independent experiments, namely SVM with 25 features, SVM with 30 features, SVM with 35 features, and PCA-SVM with 25 features, are conducted. From the experiments, it is observed that AE-SVM has performed better than others.
2022-06-09
Pour, Morteza Safaei, Watson, Dylan, Bou-Harb, Elias.  2021.  Sanitizing the IoT Cyber Security Posture: An Operational CTI Feed Backed up by Internet Measurements. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :497–506.

The Internet-of-Things (IoT) paradigm at large continues to be compromised, hindering the privacy, dependability, security, and safety of our nations. While the operational security communities (i.e., CERTS, SOCs, CSIRT, etc.) continue to develop capabilities for monitoring cyberspace, tools which are IoT-centric remain at its infancy. To this end, we address this gap by innovating an actionable Cyber Threat Intelligence (CTI) feed related to Internet-scale infected IoT devices. The feed analyzes, in near real-time, 3.6TB of daily streaming passive measurements ( ≈ 1M pps) by applying a custom-developed learning methodology to distinguish between compromised IoT devices and non-IoT nodes, in addition to labeling the type and vendor. The feed is augmented with third party information to provide contextual information. We report on the operation, analysis, and shortcomings of the feed executed during an initial deployment period. We make the CTI feed available for ingestion through a public, authenticated API and a front-end platform.

2022-03-15
Natalino, Carlos, Manso, Carlos, Vilalta, Ricard, Monti, Paolo, Munõz, Raul, Furdek, Marija.  2021.  Scalable Physical Layer Security Components for Microservice-Based Optical SDN Controllers. 2021 European Conference on Optical Communication (ECOC). :1—4.

We propose and demonstrate a set of microservice-based security components able to perform physical layer security assessment and mitigation in optical networks. Results illustrate the scalability of the attack detection mechanism and the agility in mitigating attacks.

Prabavathy, S., Supriya, V..  2021.  SDN based Cognitive Security System for Large-Scale Internet of Things using Fog Computing. 2021 International Conference on Emerging Techniques in Computational Intelligence (ICETCI). :129—134.
Internet of Things (IoT) is penetrating into every aspect of our personal lives including our body, our home and our living environment which poses numerous security challenges. The number of heterogeneous connected devices is increasing exponentially in IoT, which in turn increases the attack surface of IoT. This forces the need for uniform, distributed security mechanism which can efficiently detect the attack at faster rate in highly scalable IoT environment. The proposed work satisfies this requirement by providing a security framework which combines Fog computing and Software Defined Networking (SDN). The experimental results depicts the effectiveness in protecting the IoT applications at faster rate
2022-04-01
Thorat, Pankaj, Dubey, Niraj Kumar, Khetan, Kunal, Challa, Rajesh.  2021.  SDN-based Predictive Alarm Manager for Security Attacks Detection at the IoT Gateways. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–2.

The growing adoption of IoT devices is creating a huge positive impact on human life. However, it is also making the network more vulnerable to security threats. One of the major threats is malicious traffic injection attack, where the hacked IoT devices overwhelm the application servers causing large-scale service disruption. To address such attacks, we propose a Software Defined Networking based predictive alarm manager solution for malicious traffic detection and mitigation at the IoT Gateway. Our experimental results with the proposed solution confirms the detection of malicious flows with nearly 95% precision on average and at its best with around 99% precision.

2022-05-12
Aldawood, Mansour, Jhumka, Arshad.  2021.  Secure Allocation for Graph-Based Virtual Machines in Cloud Environments. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–7.

Cloud computing systems (CCSs) enable the sharing of physical computing resources through virtualisation, where a group of virtual machines (VMs) can share the same physical resources of a given machine. However, this sharing can lead to a so-called side-channel attack (SCA), widely recognised as a potential threat to CCSs. Specifically, malicious VMs can capture information from (target) VMs, i.e., those with sensitive information, by merely co-located with them on the same physical machine. As such, a VM allocation algorithm needs to be cognizant of this issue and attempts to allocate the malicious and target VMs onto different machines, i.e., the allocation algorithm needs to be security-aware. This paper investigates the allocation patterns of VM allocation algorithms that are more likely to lead to a secure allocation. A driving objective is to reduce the number of VM migrations during allocation. We also propose a graph-based secure VMs allocation algorithm (GbSRS) to minimise SCA threats. Our results show that algorithms following a stacking-based behaviour are more likely to produce secure VMs allocation than those following spreading or random behaviours.

2022-05-05
Mukherjee, Sayak, Adetola, Veronica.  2021.  A Secure Learning Control Strategy via Dynamic Camouflaging for Unknown Dynamical Systems under Attacks. 2021 IEEE Conference on Control Technology and Applications (CCTA). :905—910.

This paper presents a secure reinforcement learning (RL) based control method for unknown linear time-invariant cyber-physical systems (CPSs) that are subjected to compositional attacks such as eavesdropping and covert attack. We consider the attack scenario where the attacker learns about the dynamic model during the exploration phase of the learning conducted by the designer to learn a linear quadratic regulator (LQR), and thereafter, use such information to conduct a covert attack on the dynamic system, which we refer to as doubly learning-based control and attack (DLCA) framework. We propose a dynamic camouflaging based attack-resilient reinforcement learning (ARRL) algorithm which can learn the desired optimal controller for the dynamic system, and at the same time, can inject sufficient misinformation in the estimation of system dynamics by the attacker. The algorithm is accompanied by theoretical guarantees and extensive numerical experiments on a consensus multi-agent system and on a benchmark power grid model.

2022-02-24
Thammarat, Chalee, Techapanupreeda, Chian.  2021.  A Secure Mobile Payment Protocol for Handling Accountability with Formal Verification. 2021 International Conference on Information Networking (ICOIN). :249–254.
Mobile payment protocols have attracted widespread attention over the past decade, due to advancements in digital technology. The use of these protocols in online industries can dramatically improve the quality of online services. However, the central issue of concern when utilizing these types of systems is their accountability, which ensures trust between the parties involved in payment transactions. It is, therefore, vital for researchers to investigate how to handle the accountability of mobile payment protocols. In this research, we introduce a secure mobile payment protocol to overcome this problem. Our payment protocol combines all the necessary security features, such as confidentiality, integrity, authentication, and authorization that are required to build trust among parties. In other words, is the properties of mutual authentication and non-repudiation are ensured, thus providing accountability. Our approach can resolve any conflicts that may arise in payment transactions between parties. To prove that the proposed protocol is correct and complete, we use the Scyther and AVISPA tools to verify our approach formally.
2022-03-22
Lee, Hakjun, Ryu, Jihyeon, Lee, Youngsook, Won, Dongho.  2021.  Security Analysis of Blockchain-based User Authentication for Smart Grid Edge Computing Infrastructure. 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1—4.

With the development of IT technology and the generalization of the Internet of Things, smart grid systems combining IoT for efficient power grid construction are being widely deployed. As a form of development for this, edge computing and blockchain technology are being combined with the smart grid. Wang et al. proposed a user authentication scheme to strengthen security in this environment. In this paper, we describe the scheme proposed by Wang et al. and security faults. The first is that it is vulnerable to a side-channel attack, an impersonation attack, and a key material change attack. In addition, their scheme does not guarantee the anonymity of a participant in the smart grid system.

2022-08-26
Zhao, Yue, Shen, Yang, Qi, Yuanbo.  2021.  A Security Analysis of Chinese Robot Supply Chain Based on Open-Source Intelligence. 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). :219—222.

This paper argues that the security management of the robot supply chain would preferably focus on Sino-US relations and technical bottlenecks based on a comprehensive security analysis through open-source intelligence and data mining of associated discourses. Through the lens of the newsboy model and game theory, this study reconstructs the risk appraisal model of the robot supply chain and rebalances the process of the Sino-US competition game, leading to the prediction of China's strategic movements under the supply risks. Ultimately, this paper offers a threefold suggestion: increasing the overall revenue through cost control and scaled expansion, resilience enhancement and risk prevention, and outreach of a third party's cooperation for confrontation capabilities reinforcement.

2022-06-08
Dhoot, Anshita, Zong, Boyang, Saeed, Muhammad Salman, Singh, Karan.  2021.  Security Analysis of Private Intellectual Property. 2021 International Conference on Engineering Management of Communication and Technology (EMCTECH). :1–7.

Intellectual Property Rights (IPR) results from years of research and wisdom by property owners, and it plays an increasingly important role in promoting economic development, technological progress, and cultural prosperity. Thus, we need to strengthen the degree of protection of IPR. However, as internet technology continues to open up the market for IPR, the ease of network operation has led to infringement of IPR in some cases. Intellectual property infringement has occurred in some cases. Also, Internet development's concealed and rapid nature has led to the fact that IPR infringers cannot be easily detected. This paper addresses how to protect the rights and interests of IPR holders in the context of the rapid development of the internet. This paper explains the IPR and proposes an algorithm to enhance security for a better security model to protect IPR. This proposes optimization techniques to detect intruder attacks for securing IPR, by using support vector machines (SVM), it provides better results to secure public and private intellectual data by optimizing technologies.

2022-02-25
Patil, Sonali, Kadam, Sarika, Katti, Jayashree.  2021.  Security Enhancement of Forensic Evidences Using Blockchain. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :263–268.

In today's digital era, data is most important in every phase of work. The storage and processing on data with security is the need of each and every application field. Data need to be tamper resistant due to possibility of alteration. Data can be represented and stored in heterogeneous format. There are chances of attack on information which is vital for particular organization. With rapid increase in cyber crime, attackers behave maliciously to alter those data. But it is having great impact on forensic evidences which is required for provenance. Therefore, it is required to maintain the reliability and provenance of digital evidences as it travels through various stages during forensic investigation. In this approach, there is a forensic chain in which generated report passes through various levels or intermediaries such as pathology laboratory, doctor, police department etc. To build the transparent system with immutability of forensic evidences, blockchain technology is more suitable. Blockchain technology provides the transfer of assets or evidence reports in transparent environment without central authority. In this paper blockchain based secure system for forensic evidences is proposed. The proposed system is implemented on Ethereum platform. The tampering of forensic evidence can be easily traced at any stage by anyone in the forensic chain. The security enhancement of forensic evidences is achieved through implementation on Ethereum platform with high integrity, traceability and immutability.

2022-08-26
Basumatary, Basundhara, Kumar, Chandan, Yadav, Dilip Kumar.  2021.  Security Risk Assessment of Information Systems in an Indeterminate Environment. 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence). :82—87.

The contemporary struggle that rests upon security risk assessment of Information Systems is its feasibility in the presence of an indeterminate environment when information is insufficient, conflicting, generic or ambiguous. But as pointed out by the security experts, most of the traditional approaches to risk assessment of information systems security are no longer practicable as they fail to deliver viable support on handling uncertainty. Therefore, to address this issue, we have anticipated a comprehensive risk assessment model based on Bayesian Belief Network (BBN) and Fuzzy Inference Scheme (FIS) process to function in an indeterminate environment. The proposed model is demonstrated and further comparisons are made on the test results to validate the reliability of the proposed model.

2022-01-10
Wang, Xiaoyu, Han, Zhongshou, Yu, Rui.  2021.  Security Situation Prediction Method of Industrial Control Network Based on Ant Colony-RBF Neural Network. 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). :834–837.
To understand the future trend of network security, the field of network security began to introduce the concept of NSSA(Network Security Situation Awareness). This paper implements the situation assessment model by using game theory algorithms to calculate the situation value of attack and defense behavior. After analyzing the ant colony algorithm and the RBF neural network, the defects of the RBF neural network are improved through the advantages of the ant colony algorithm, and the situation prediction model based on the ant colony-RBF neural network is realized. Finally, the model was verified experimentally.