Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2022-02-07
Narayanankutty, Hrishikesh.  2021.  Self-Adapting Model-Based SDSec For IoT Networks Using Machine Learning. 2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-C). :92–93.
IoT networks today face a myriad of security vulnerabilities in their infrastructure due to its wide attack surface. Large-scale networks are increasingly adopting a Software-Defined Networking approach, it allows for simplified network control and management through network virtualization. Since traditional security mechanisms are incapable of handling virtualized environments, SDSec or Software-Defined Security is introduced as a solution to support virtualized infrastructure, specifically aimed at providing security solutions to SDN frameworks. To further aid large scale design and development of SDN frameworks, Model-Driven Engineering (MDE) has been proposed to be used at the design phase, since abstraction, automation and analysis are inherently key aspects of MDE. This provides an efficient approach to reducing large problems through models that abstract away the complex technicality of the total system. Making adaptations to these models to address security issues faced in IoT networks, largely reduces cost and improves efficiency. These models can be simulated, analysed and supports architecture model adaptation; model changes are then reflected back to the real system. We propose a model-driven security approach for SDSec networks that can self-adapt using machine learning to mitigate security threats. The overall design time changes can be monitored at run time through machine learning techniques (e.g. deep, reinforcement learning) for real time analysis. This approach can be tested in IoT simulation environments, for instance using the CAPS IoT modeling and simulation framework. Using self-adaptation of models and advanced machine learning for data analysis would ensure that the SDSec architecture adapts and improves over time. This largely reduces the overall attack surface to achieve improved end-to-end security in IoT environments.
2022-01-31
Grabatin, Michael, Hommel, Wolfgang.  2021.  Self-sovereign Identity Management in Wireless Ad Hoc Mesh Networks. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :480–486.

Verifying the identity of nodes within a wireless ad hoc mesh network and the authenticity of their messages in sufficiently secure, yet power-efficient ways is a long-standing challenge. This paper shows how the more recent concepts of self-sovereign identity management can be applied to Internet-of-Things mesh networks, using LoRaWAN as an example and applying Sovrin's decentralized identifiers and verifiable credentials in combination with Schnorr signatures for securing the communication with a focus on simplex and broadcast connections. Besides the concept and system architecture, the paper discusses an ESP32-based implementation using SX1276/SX1278 LoRa chips, adaptations made to the lmic- and MbedTLS-based software stack, and practically evaluates performance aspects in terms of data overhead, time-on-air impact, and power consumption.

2022-06-09
Jin, Shiyi, Chung, Jin-Gyun, Xu, Yinan.  2021.  Signature-Based Intrusion Detection System (IDS) for In-Vehicle CAN Bus Network. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

In-vehicle CAN (Controller Area Network) bus network does not have any network security protection measures, which is facing a serious network security threat. However, most of the intrusion detection solutions requiring extensive computational resources cannot be implemented in in- vehicle network system because of the resource constrained ECUs. To add additional hardware or to utilize cloud computing, we need to solve the cost problem and the reliable communication requirement between vehicles and cloud platform, which is difficult to be applied in a short time. Therefore, we need to propose a short-term solution for automobile manufacturers. In this paper, we propose a signature-based light-weight intrusion detection system, which can be applied directly and promptly to vehicle's ECUs (Electronic Control Units). We detect the anomalies caused by several attack modes on CAN bus from real-world scenarios, which provide the basis for selecting signatures. Experimental results show that our method can effectively detect CAN traffic related anomalies. For the content related anomalies, the detection ratio can be improved by exploiting the relationship between the signals.

2022-02-22
Yadav, Ashok Kumar.  2021.  Significance of Elliptic Curve Cryptography in Blockchain IoT with Comparative Analysis of RSA Algorithm. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :256—262.
In the past few years, the blockchain emerged as peer-to-peer distributed ledger technology for recording transactions, maintained by many peers without any central trusted regulatory authority through distributed public-key cryptography and consensus mechanism. It has not only given the birth of cryptocurrencies, but it also resolved various security, privacy and transparency issues of decentralized systems. This article discussed the blockchain basics overview, architecture, and blockchain security components such as hash function, Merkle tree, digital signature, and Elliptic curve cryptography (ECC). In addition to the core idea of blockchain, we focus on ECC's significance in the blockchain. We also discussed why RSA and other key generation mechanisms are not suitable for blockchain-based IoT applications. We also analyze many possible blockchain-based applications where ECC algorithm is better than other algorithms concerning security and privacy assurance. At the end of the article, we will explain the comparative analysis of ECC and RSA.
Singh, Ashwini Kumar, Kushwaha, Nagendra.  2021.  Software and Hardware Security of IoT. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1—5.
With the tremendous growth of IoT application, providing security to IoT systems has become more critical. In this paper, a technique is presented to ensure the safety of Internet of Things (IoT) devices. This technique ensures hardware and software security of IoT devices. Blockchain technology is used for software security and hardware logics are used for hardware security. For enabling a Blockchain, Ethereum Network is used for secure peer-to-peer transmission. A prototype model is also used using two IoT nodes to demonstrate the security logic.
2022-05-05
Raab, Alexander, Mehlmann, Gert, Luther, Matthias, Sennewald, Tom, Schlegel, Steffen, Westermann, Dirk.  2021.  Steady-State and Dynamic Security Assessment for System Operation. 2021 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.

This contribution provides the implementation of a holistic operational security assessment process for both steady-state security and dynamic stability. The merging of steady-state and dynamic security assessment as a sequential process is presented. A steady-state and dynamic modeling of a VSC-HVDC was performed including curative and stabilizing measures as remedial actions. The assessment process was validated by a case study on a modified version of the Nordic 32 system. Simulation results showed that measure selection based on purely steady-state contingency analysis can lead to loss of stability in time domain. A subsequent selection of measures on the basis of the dynamic security assessment was able to guarantee the operational security for the stationary N-1 scenario as well as the power system stability.

2022-01-10
Sahu, Abhijeet, Davis, Katherine.  2021.  Structural Learning Techniques for Bayesian Attack Graphs in Cyber Physical Power Systems. 2021 IEEE Texas Power and Energy Conference (TPEC). :1–6.

Updating the structure of attack graph templates based on real-time alerts from Intrusion Detection Systems (IDS), in an Industrial Control System (ICS) network, is currently done manually by security experts. But, a highly-connected smart power systems, that can inadvertently expose numerous vulnerabilities to intruders for targeting grid resilience, needs automatic fast updates on learning attack graph structures, instead of manual intervention, to enable fast isolation of compromised network to secure the grid. Hence, in this work, we develop a technique to first construct a prior Bayesian Attack Graph (BAG) based on a predefined threat model and a synthetic communication network for a cyber-physical power system. Further, we evaluate a few score-based and constraint-based structural learning algorithms to update the BAG structure based on real-time alerts, based on scalability, data dependency, time complexity and accuracy criteria.

2022-02-22
Philomina, Josna.  2021.  A Study on the Effect of Hardware Trojans in the Performance of Network on Chip Architectures. 2021 8th International Conference on Smart Computing and Communications (ICSCC). :314—318.
Network on chip (NoC) is the communication infrastructure used in multicores which has been subject to a surfeit of security threats like degrading the system performance, changing the system functionality or leaking sensitive information. Because of the globalization of the advanced semiconductor industry, many third-party venders take part in the hardware design of system. As a result, a malicious circuit, called Hardware Trojans (HT) can be added anywhere into the NoC design and thus making the hardware untrusted. In this paper, a detailed study on the taxonomy of hardware trojans, its detection and prevention mechanisms are presented. Two case studies on HT-assisted Denial of service attacks and its analysis in the performance of network on Chip architecture is also presented in this paper.
2022-07-28
ÖZGÜR, Berkecan, Dogru, Ibrahim Alper, Uçtu, Göksel, ALKAN, Mustafa.  2021.  A Suggested Model for Mobile Application Penetration Test Framework. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :18—21.

Along with technological developments in the mobile environment, mobile devices are used in many areas like banking, social media and communication. The common characteristic of applications in these fields is that they contain personal or financial information of users. These types of applications are developed for Android or IOS operating systems and have become the target of attackers. To detect weakness, security analysts, perform mobile penetration tests using security analysis tools. These analysis tools have advantages and disadvantages to each other. Some tools can prioritize static or dynamic analysis, others not including these types of tests. Within the scope of the current model, we are aim to gather security analysis tools under the penetration testing framework, also contributing analysis results by data fusion algorithm. With the suggested model, security analysts will be able to use these types of analysis tools in addition to using the advantage of fusion algorithms fed by analysis tools outputs.

2022-03-23
Chandavarkar, B. R., Shantanu, T K.  2021.  Sybil Attack Simulation and Mitigation in UnetStack. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :01—07.

Underwater networks have the potential to enable unexplored applications and to enhance our ability to observe and predict the ocean. Underwater acoustic sensor networks (UASNs) are often deployed in unprecedented and hostile waters and face many security threats. Applications based on UASNs such as coastal defense, pollution monitoring, assisted navigation to name a few, require secure communication. A new set of communication protocols and cooperative coordination algorithms have been proposed to enable collaborative monitoring tasks. However, such protocols overlook security as a key performance indicator. Spoofing, altering, or replaying routing information can affect the entire network, making UASN vulnerable to routing attacks such as selective forwarding, sinkhole attack, Sybil attack, acknowledgement spoofing and HELLO flood attack. The lack of security against such threats is startling if maintained that security is indeed an important requirement in many emerging civilian and military applications. In this work, we look at one of the most prevalent attacks among UASNs which is Sybill attack and discuss mitigation approaches for it. Then, feasibly implemented the attack in UnetStack3 to simulate real-life scenario.

2022-02-04
Zhang, Mingyue.  2021.  System Component-Level Self-Adaptations for Security via Bayesian Games. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :102–104.

Security attacks present unique challenges to self-adaptive system design due to the adversarial nature of the environment. However, modeling the system as a single player, as done in prior works in security domain, is insufficient for the system under partial compromise and for the design of fine-grained defensive strategies where the rest of the system with autonomy can cooperate to mitigate the impact of attacks. To deal with such issues, we propose a new self-adaptive framework incorporating Bayesian game and model the defender (i.e., the system) at the granularity of components in system architecture. The system architecture model is translated into a Bayesian multi-player game, where each component is modeled as an independent player while security attacks are encoded as variant types for the components. The defensive strategy for the system is dynamically computed by solving the pure equilibrium to achieve the best possible system utility, improving the resiliency of the system against security attacks.

Sun, Wei.  2021.  Taguard: Exposing the Location of Active Eavesdropper in Passive RFID System. 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :360—363.

This paper exploits the possibility of exposing the location of active eavesdropper in commodity passive RFID system. Such active eavesdropper can activate the commodity passive RFID tags to achieve data eavesdropping and jamming. In this paper, we show that these active eavesdroppers can be significantly detrimental to the commodity passive RFID system on RFID data security and system feasibility. We believe that the best way to defeat the active eavesdropper in the commodity passive RFID system is to expose the location of the active eavesdropper and kick it out. To do so, we need to localize the active eavesdropper. However, we cannot extract the channel from the active eavesdropper, since we do not know what the active eavesdropper's transmission and the interference from the tag's backscattered signals. So, we propose an approach to mitigate the tag's interference and cancel out the active eavesdropper's transmission to obtain the subtraction-and-division features, which will be used as the input of the machine learning model to predict the location of active eavesdropper. Our preliminary results show the average accuracy of 96% for predicting the active eavesdropper's position in four grids of the surveillance plane.

2022-02-07
Shah, Imran Ali, Kapoor, Nitika.  2021.  To Detect and Prevent Black Hole Attack in Mobile Ad Hoc Network. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–4.
Mobile Ad hoc Networks ‘MANETs’ are still defenseless against peripheral threats due to the fact that this network has vulnerable access and also the absence of significant fact of administration. The black hole attack is a kind of some routing attack, in this type of attack the attacker node answers to the Route Requests (RREQs) thru faking and playing itself as an adjacent node of the destination node in order to get through the data packets transported from the source node. To counter this situation, we propose to deploy some nodes (exhibiting some distinctive functionality) in the network called DPS (Detection and Prevention System) nodes that uninterruptedly monitor the RREQs advertised by all other nodes in the networks. DPS nodes target to satisfy the set objectives in which it has to sense the mischievous nodes by detecting the activities of their immediate neighbor. In the case, when a node demonstrates some peculiar manners, which estimates according to the experimental data, DPS node states that particular distrustful node as black hole node by propagation of a threat message to all the remaining nodes in the network. A protocol with a clustering approach in AODV routing protocol is used to sense and avert the black hole attack in the mentioned network. Consequently, empirical evaluation shows that the black hole node is secluded and prohibited from the whole system and is not allowed any data transfer from any node thereafter.
2022-08-26
Casola, Valentina, Benedictis, Alessandra De, Mazzocca, Carlo, Montanari, Rebecca.  2021.  Toward Automated Threat Modeling of Edge Computing Systems. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :135—140.

Edge computing brings processing and storage capabilities closer to the data sources, to reduce network latency, save bandwidth, and preserve data locality. Despite the clear benefits, this paradigm brings unprecedented cyber risks due to the combination of the security issues and challenges typical of cloud and Internet of Things (IoT) worlds. Notwithstanding an increasing interest in edge security by academic and industrial communities, there is still no discernible industry consensus on edge computing security best practices, and activities like threat analysis and countermeasure selection are still not well established and are completely left to security experts.In order to cope with the need for a simplified yet effective threat modeling process, which is affordable in presence of limited security skills and economic resources, and viable in modern development approaches, in this paper, we propose an automated threat modeling and countermeasure selection strategy targeting edge computing systems. Our approach leverages a comprehensive system model able to describe the main involved architectural elements and the associated data flow, with a focus on the specific properties that may actually impact on the applicability of threats and of associated countermeasures.

2022-02-03
Lee, Hyo-Cheol, Lee, Seok-Won.  2021.  Towards Provenance-based Trust-aware Model for Socio-Technically Connected Self-Adaptive System. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :761—767.
In a socio-technically connected environment, self-adaptive systems need to cooperate with others to collect information to provide context-dependent functionalities to users. A key component of ensuring safe and secure cooperation is finding trustworthy information and its providers. Trust is an emerging quality attribute that represents the level of belief in the cooperative environments and serves as a promising solution in this regard. In this research, we will focus on analyzing trust characteristics and defining trust-aware models through the trust-aware goal model and the provenance model. The trust-aware goal model is designed to represent the trust-related requirements and their relationships. The provenance model is analyzed as trust evidence to be used for the trust evaluation. The proposed approach contributes to build a comprehensive understanding of trust and design a trust-aware self-adaptive system. In order to show the feasibility of the proposed approach, we will conduct a case study with the crowd navigation system for an unmanned vehicle system.
2022-08-26
de Moura, Ralf Luis, Franqueira, Virginia N. L., Pessin, Gustavo.  2021.  Towards Safer Industrial Serial Networks: An Expert System Framework for Anomaly Detection. 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI). :1197—1205.

Cyber security is a topic of increasing relevance in relation to industrial networks. The higher intensity and intelligent use of data pushed by smart technology (Industry 4.0) together with an augmented integration between the operational technology (production) and the information technology (business) parts of the network have considerably raised the level of vulnerabilities. On the other hand, many industrial facilities still use serial networks as underlying communication system, and they are notoriously limited from a cyber security perspective since protection mechanisms available for ТСР/IР communication do not apply. Therefore, an attacker gaining access to a serial network can easily control the industrial components, potentially causing catastrophic incidents, jeopardizing assets and human lives. This study proposes a framework to act as an anomaly detection system (ADS) for industrial serial networks. It has three ingredients: an unsupervised К-means component to analyse message content, a knowledge-based Expert System component to analyse message metadata, and a voting process to generate alerts for security incidents, anomalous states, and faults. The framework was evaluated using the Proflbus-DP, a network simulator which implements a serial bus system. Results for the simulated traffic were promising: 99.90% for accuracy, 99,64% for precision, and 99.28% for F1-Score. They indicate feasibility of the framework applied to serial-based industrial networks.

VanYe, Christopher M., Li, Beatrice E., Koch, Andrew T., Luu, Mai N., Adekunle, Rahman O., Moghadasi, Negin, Collier, Zachary A., Polmateer, Thomas L., Barnes, David, Slutzky, David et al..  2021.  Trust and Security of Embedded Smart Devices in Advanced Logistics Systems. 2021 Systems and Information Engineering Design Symposium (SIEDS). :1—6.

This paper addresses security and risk management of hardware and embedded systems across several applications. There are three companies involved in the research. First is an energy technology company that aims to leverage electric- vehicle batteries through vehicle to grid (V2G) services in order to provide energy storage for electric grids. Second is a defense contracting company that provides acquisition support for the DOD's conventional prompt global strike program (CPGS). These systems need protections in their production and supply chains, as well as throughout their system life cycles. Third is a company that deals with trust and security in advanced logistics systems generally. The rise of interconnected devices has led to growth in systems security issues such as privacy, authentication, and secure storage of data. A risk analysis via scenario-based preferences is aided by a literature review and industry experts. The analysis is divided into various sections of Criteria, Initiatives, C-I Assessment, Emergent Conditions (EC), Criteria-Scenario (C-S) relevance and EC Grouping. System success criteria, research initiatives, and risks to the system are compiled. In the C-I Assessment, a rating is assigned to signify the degree to which criteria are addressed by initiatives, including research and development, government programs, industry resources, security countermeasures, education and training, etc. To understand risks of emergent conditions, a list of Potential Scenarios is developed across innovations, environments, missions, populations and workforce behaviors, obsolescence, adversaries, etc. The C-S Relevance rates how the scenarios affect the relevance of the success criteria, including cost, schedule, security, return on investment, and cascading effects. The Emergent Condition Grouping (ECG) collates the emergent conditions with the scenarios. The generated results focus on ranking Initiatives based on their ability to negate the effects of Emergent Conditions, as well as producing a disruption score to compare a Potential Scenario's impacts to the ranking of Initiatives. The results presented in this paper are applicable to the testing and evaluation of security and risk for a variety of embedded smart devices and should be of interest to developers, owners, and operators of critical infrastructure systems.

2022-02-03
Pang, Yijiang, Liu, Rui.  2021.  Trust-Aware Emergency Response for A Resilient Human-Swarm Cooperative System. 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :15—20.

A human-swarm cooperative system, which mixes multiple robots and a human supervisor to form a mission team, has been widely used for emergent scenarios such as criminal tracking and victim assistance. These scenarios are related to human safety and require a robot team to quickly transit from the current undergoing task into the new emergent task. This sudden mission change brings difficulty in robot motion adjustment and increases the risk of performance degradation of the swarm. Trust in human-human collaboration reflects a general expectation of the collaboration; based on the trust humans mutually adjust their behaviors for better teamwork. Inspired by this, in this research, a trust-aware reflective control (Trust-R), was developed for a robot swarm to understand the collaborative mission and calibrate its motions accordingly for better emergency response. Typical emergent tasks “transit between area inspection tasks”, “response to emergent target - car accident” in social security with eight fault-related situations were designed to simulate robot deployments. A human user study with 50 volunteers was conducted to model trust and assess swarm performance. Trust-R's effectiveness in supporting a robot team for emergency response was validated by improved task performance and increased trust scores.

2022-02-04
Xu, Qizhen, Chen, Liwei, Shi, Gang.  2021.  Twine Stack: A Hybrid Mechanism Achieving Less Cost for Return Address Protection. 2021 IEEE 30th Asian Test Symposium (ATS). :7—12.
Return-oriented programming(ROP) is a prevalent technique that targets return addresses to hijack control flow. To prevent such attack, researchers mainly focus on either Shadow Stack or MAC-based mechanisms(message code authentication). But Shadow Stack suffers from additional memory overhead and information leakage, while MAC-based mechanisms(e.g. Zipper Stack) impose high runtime overhead for MAC calculations.In this paper, we propose Twine Stack, a hybrid and efficient return address protection mechanism with lightweight hardware extension. It utilizes a tiny hardware shadow stack to realize a new multi-chain Zipper Stack. Specifically, each entry in the shadow stack stores a return address and its MAC in each chain, allowing queueing calculation with just one hash module. At meantime, some return address verifications could be done by comparison with the hardware shadow stack, instead of calculation again. We implemented Twine Stack on RISC-V architecture, and evaluated it on FPGA board. Our experiments show that Twine Stack reduces over 95% hash verifications, and imposes merely 1.38% performance overhead with an area overhead of 974 LUTs and 726 flip flops. The result demonstrates that our hybrid scheme mitigates the drawbacks of each separate scheme.
2022-09-09
Wilke, Luca, Wichelmann, Jan, Sieck, Florian, Eisenbarth, Thomas.  2021.  undeSErVed trust: Exploiting Permutation-Agnostic Remote Attestation. 2021 IEEE Security and Privacy Workshops (SPW). :456—466.

The ongoing trend of moving data and computation to the cloud is met with concerns regarding privacy and protection of intellectual property. Cloud Service Providers (CSP) must be fully trusted to not tamper with or disclose processed data, hampering adoption of cloud services for many sensitive or critical applications. As a result, CSPs and CPU manufacturers are rushing to find solutions for secure and trustworthy outsourced computation in the Cloud. While enclaves, like Intel SGX, are strongly limited in terms of throughput and size, AMD’s Secure Encrypted Virtualization (SEV) offers hardware support for transparently protecting code and data of entire VMs, thus removing the performance, memory and software adaption barriers of enclaves. Through attestation of boot code integrity and means for securely transferring secrets into an encrypted VM, CSPs are effectively removed from the list of trusted entities. There have been several attacks on the security of SEV, by abusing I/O channels to encrypt and decrypt data, or by moving encrypted code blocks at runtime. Yet, none of these attacks have targeted the attestation protocol, the core of the secure computing environment created by SEV. We show that the current attestation mechanism of Zen 1 and Zen 2 architectures has a significant flaw, allowing us to manipulate the loaded code without affecting the attestation outcome. An attacker may abuse this weakness to inject arbitrary code at startup–and thus take control over the entire VM execution, without any indication to the VM’s owner. Our attack primitives allow the attacker to do extensive modifications to the bootloader and the operating system, like injecting spy code or extracting secret data. We present a full end-to-end attack, from the initial exploit to leaking the key of the encrypted disk image during boot, giving the attacker unthrottled access to all of the VM’s persistent data.

2022-07-13
Angelogianni, Anna, Politis, Ilias, Polvanesi, Pier Luigi, Pastor, Antonio, Xenakis, Christos.  2021.  Unveiling the user requirements of a cyber range for 5G security testing and training. 2021 IEEE 26th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.

Cyber ranges are proven to be effective towards the direction of cyber security training. Nevertheless, the existing literature in the area of cyber ranges does not cover, to our best knowledge, the field of 5G security training. 5G networks, though, reprise a significant field for modern cyber security, introducing a novel threat landscape. In parallel, the demand for skilled cyber security specialists is high and still rising. Therefore, it is of utmost importance to provide all means to experts aiming to increase their preparedness level in the case of an unwanted event. The EU funded SPIDER project proposes an innovative Cyber Range as a Service (CRaaS) platform for 5G cyber security testing and training. This paper aims to present the evaluation framework, followed by SPIDER, for the extraction of the user requirements. To validate the defined user requirements, SPIDER leveraged of questionnaires which included both closed and open format questions and were circulated among the personnel of telecommunication providers, vendors, security service providers, managers, engineers, cyber security personnel and researchers. Here, we demonstrate a selected set of the most critical questions and responses received. From the conducted analysis we reach to some important conclusions regarding 5G testing and training capabilities that should be offered by a cyber range, in addition to the analysis of the different perceptions between cyber security and 5G experts.

2022-03-08
Tian, Qian, Song, Qishun, Wang, Hongbo, Hu, Zhihong, Zhu, Siyu.  2021.  Verification Code Recognition Based on Convolutional Neural Network. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:1947—1950.

Verification code recognition system based on convolutional neural network. In order to strengthen the network security defense work, this paper proposes a novel verification code recognition system based on convolutional neural network. The system combines Internet technology and big data technology, combined with advanced captcha technology, can prevent hackers from brute force cracking behavior to a certain extent. In addition, the system combines convolutional neural network, which makes the verification code combine numbers and letters, which improves the complexity of the verification code and the security of the user account. Based on this, the system uses threshold segmentation method and projection positioning method to construct an 8-layer convolutional neural network model, which enhances the security of the verification code input link. The research results show that the system can enhance the complexity of captcha, improve the recognition rate of captcha, and improve the security of user accounting.

2022-03-09
Chandankhede, Pankaj H., Titarmare, Abhijit S., Chauhvan, Sarang.  2021.  Voice Recognition Based Security System Using Convolutional Neural Network. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :738—743.
Following review depicts a unique speech recognition technique, based on planned analysis and utilization of Neural Network and Google API using speech’s characteristics. Multifactor security system pioneered for the authentication of vocal modalities and identification. Undergone project drives completely unique strategy of independent convolution layers structure and involvement of totally unique convolutions includes spectrum and Mel-frequency cepstral coefficient. This review takes in the statistical analysis of sound using scaled up and scaled down spectrograms, conjointly by exploitation the Google Speech-to-text API turns speech to pass code, it will be cross-verified for extended security purpose. Our study reveals that the incorporated methodology and the result provided elucidate the inclination of research in this area and encouraged us to advance in this field.
2022-01-31
Velez, Miguel, Jamshidi, Pooyan, Siegmund, Norbert, Apel, Sven, Kästner, Christian.  2021.  White-Box Analysis over Machine Learning: Modeling Performance of Configurable Systems. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1072–1084.

Performance-influence models can help stakeholders understand how and where configuration options and their interactions influence the performance of a system. With this understanding, stakeholders can debug performance behavior and make deliberate configuration decisions. Current black-box techniques to build such models combine various sampling and learning strategies, resulting in tradeoffs between measurement effort, accuracy, and interpretability. We present Comprex, a white-box approach to build performance-influence models for configurable systems, combining insights of local measurements, dynamic taint analysis to track options in the implementation, compositionality, and compression of the configuration space, without relying on machine learning to extrapolate incomplete samples. Our evaluation on 4 widely-used, open-source projects demonstrates that Comprex builds similarly accurate performance-influence models to the most accurate and expensive black-box approach, but at a reduced cost and with additional benefits from interpretable and local models.

2022-05-06
Junqing, Zhang, Gangqiang, Zhang, Junkai, Liu.  2021.  Wormhole Attack Detecting in Underwater Acoustic Communication Networks. 2021 OES China Ocean Acoustics (COA). :647—650.

Because the underwater acoustic communication network transmits data through the underwater acoustic wireless link, the Underwater Acoustic Communication Network is easy to suffer from the external artificial interference, in this paper, the detection algorithm of wormhole attack in Underwater Acoustic Communication Network based on Azimuth measurement technology is studied. The existence of wormhole attack is judged by Azimuth or distance outliers, and the security performance of underwater acoustic communication network is evaluated. The influence of different azimuth direction errors on the detection probability of wormhole attack is analyzed by simulation. The simulation results show that this method has a good detection effect for Underwater Acoustic Communication Network.