Biblio
One of the most difficult challenges in robot motion planning is to account for the behavior of other moving agents, such as humans. Commonly, practitioners employ predictive models to reason about where other agents are going to move. Though there has been much recent work in building predictive models, no model is ever perfect: an agent can always move unexpectedly, in a way that is not predicted or not assigned sufficient probability. In such cases, the robot may plan trajectories that appear safe but, in fact, lead to collision. Rather than trust a model’s predictions blindly, we propose that the robot should use the model’s current predictive accuracy to inform the degree of confidence in its future predictions. This model confidence inference allows us to generate probabilistic motion predictions that exploit modeled structure when the structure successfully explains human motion, and degrade gracefully whenever the human moves unexpectedly. We accomplish this by maintaining a Bayesian belief over a single parameter that governs the variance of our human motion model. We couple this prediction algorithm with a recently proposed robust motion planner and controller to guide the construction of robot trajectories that are, to a good approximation, collision-free with a high, user-specified probability. We provide extensive analysis of the combined approach and its overall safety properties by establishing a connection to reachability analysis, and conclude with a hardware demonstration in which a small quadcopter operates safely in the same space as a human pedestrian.
In the past couple of years, railway infrastructure has been growing more connected, resembling more of a traditional Cyber-Physical System model. Due to the tightly coupled nature between the cyber and physical domains, new attack vectors are emerging that create an avenue for remote hijacking of system components not designed to withstand such attacks. As such, best practice cybersecurity techniques need to be put in place to ensure the safety and resiliency of future railway designs, as well as infrastructure already in the field. However, traditional large-scale experimental evaluation that involves evaluating a large set of variables by running a design of experiments (DOE) may not always be practical and might not provide conclusive results. In addition, to achieve scalable experimentation, the modeling abstractions, simulation configurations, and experiment scenarios must be designed according to the analysis goals of the evaluations. Thus, it is useful to target a set of key operational metrics for evaluation and configure and extend the traditional DOE methods using these metrics. In this work, we present a metrics-driven evaluation approach for evaluating the security and resilience of railway critical infrastructure using a distributed simulation framework. A case study with experiment results is provided that demonstrates the capabilities of our testbed.