Biblio

Filters: Keyword is 2019: October  [Clear All Filters]
2019-10-10
Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo Vallina-Rodriguez, Serge Egelman.  2019.  50 Ways to Leak Your Data: An Exploration of Apps’ Circumvention of the Android Permissions System. 28th USENIX Security Symposium (USENIX Security 19). :603–620.

Modern smartphone platforms implement permission-based models to protect access to sensitive data and system resources. However, apps can circumvent the permission model and gain access to protected data without user consent by using both covert and side channels. Side channels present in the implementation of the permission system allow apps to access protected data and system resources without permission; whereas covert channels enable communication between two colluding apps so that one app can share its permission-protected data with another app lacking those permissions. Both pose threats to user privacy.

In this work, we make use of our infrastructure that runs hundreds of thousands of apps in an instrumented environment. This testing environment includes mechanisms to monitor apps' runtime behaviour and network traffic. We look for evidence of side and covert channels being used in practice by searching for sensitive data being sent over the network for which the sending app did not have permissions to access it. We then reverse engineer the apps and third-party libraries responsible for this behaviour to determine how the unauthorized access occurred. We also use software fingerprinting methods to measure the static prevalence of the technique that we discover among other apps in our corpus.

Using this testing environment and method, we uncovered a number of side and covert channels in active use by hundreds of popular apps and third-party SDKs to obtain unauthorized access to both unique identifiers as well as geolocation data. We have responsibly disclosed our findings to Google and have received a bug bounty for our work.

2020-01-29
Chuchu Fan, Sayan Mitra.  2019.  Data-Driven Safety Verification of Complex Cyber-Physical Systems. Design Automation of Cyber-Physical Systems. :107–142.

Data-driven verification methods utilize execution data together with models for establishing safety requirements. These are often the only tools available for analyzing complex, nonlinear cyber-physical systems, for which purely model-based analysis is currently infeasible. In this chapter, we outline the key concepts and algorithmic approaches for data-driven verification and discuss the guarantees they provide. We introduce some of the software tools that embody these ideas and present several practical case studies demonstrating their application in safety analysis of autonomous vehicles, advanced driver assist systems (ADAS), satellite control, and engine control systems.

2019-10-10
Alisa Frik, Leysan Nurgalieva, Julia Bernd, Joyce Lee, Florian Schaub, Serge Egelman.  2019.  Privacy and Security Threat Models and Mitigation Strategies of Older Adults. Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019). :21–40.

Older adults (65+) are becoming primary users of emerging smart systems, especially in health care. However, these technologies are often not designed for older users and can pose serious privacy and security concerns due to their novelty, complexity, and propensity to collect and communicate vast amounts of sensitive information. Efforts to address such concerns must build on an in-depth understanding of older adults' perceptions and preferences about data privacy and security for these technologies, and accounting for variance in physical and cognitive abilities. In semi-structured interviews with 46 older adults, we identified a range of complex privacy and security attitudes and needs specific to this population, along with common threat models, misconceptions, and mitigation strategies. Our work adds depth to current models of how older adults' limited technical knowledge, experience, and age-related declines in ability amplify vulnerability to certain risks; we found that health, living situation, and finances play a notable role as well. We also found that older adults often experience usability issues or technical uncertainties in mitigating those risks -- and that managing privacy and security concerns frequently consists of limiting or avoiding technology use. We recommend educational approaches and usable technical protections that build on seniors' preferences.

2019-10-16
Sarah Pearman, Shikun Zhang, Lujo Bauer, Nicolas Christin, Lorrie Cranor.  2019.  Why people (don't) use password managers effectively. Fifteenth USENIX Conference on Usable Privacy and Security SOUPS'19 . :319-338.

Security experts often recommend using password-management tools that both store passwords and generate random passwords. However, research indicates that only a small fraction of users use password managers with password generators. Past studies have explored factors in the adoption of password managers using surveys and online store reviews. Here we describe a semi-structured interview study with 30 participants that allows us to provide a more comprehensive picture of the mindsets underlying adoption and effective use of password managers and password-generation features. Our participants include users who use no password-specific tools at all, those who use password managers built into browsers or operating systems, and those who use separately installed password managers. Furthermore, past field data has indicated that users of built-in, browser-based password managers more often use weak and reused passwords than users of separate password managers that have password generation available by default. Our interviews suggest that users of built-in password managers may be driven more by convenience, while users of separately installed tools appear more driven by security. We advocate tailored designs for these two mentalities and provide actionable suggestions to induce effective password manager usage.

2019-10-10
Nuthan Munaiah, Akond Rahman, Justin Pelletier, Laurie Williams, Andrew Meneely.  2019.  Characterizing Attacker Behavior in a Cybersecurity Penetration Testing Competition. 13th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM).

Inculcating an attacker mindset (i.e. learning to think like an attacker) is an essential skill for engineers and administrators to improve the overall security of software. Describing the approach that adversaries use to discover and exploit vulnerabilities to infiltrate software systems can help inform such an attacker mindset. Aims: Our goal is to assist developers and administrators in inculcating an attacker mindset by proposing an approach to codify attacker behavior in cybersecurity penetration testing competition. Method: We use an existing multimodal dataset of events captured during the 2018 National Collegiate Penetration Testing Competition (CPTC'18) to characterize the approach a team of attackers used to discover and exploit vulnerabilities. Results: We collected 44 events to characterize the approach that one of the participating teams took to discover and exploit seven vulnerabilities. We used the MITRE ATT&CK ™ framework to codify the approach in terms of tactics and techniques. Conclusions: We show that characterizing attackers' campaign as a chronological sequence of MITRE ATT&CK ™ tactics and techniques is feasible. We hope that such a characterization can inform the attacker mindset of engineers and administrators in their pursuit of engineering secure software systems.

2020-10-30
David Fridovich-Keil, Andrea Bajcsy, Jaime Fisac, Sylvia Herbert, Steven Wang, Anca Dragan, Claire J. Tomlin.  2019.  Confidence-aware motion prediction for real-time collision avoidance. The International Journal of Robotics Research. 39(2-3):250-265.

One of the most difficult challenges in robot motion planning is to account for the behavior of other moving agents, such as humans. Commonly, practitioners employ predictive models to reason about where other agents are going to move. Though there has been much recent work in building predictive models, no model is ever perfect: an agent can always move unexpectedly, in a way that is not predicted or not assigned sufficient probability. In such cases, the robot may plan trajectories that appear safe but, in fact, lead to collision. Rather than trust a model’s predictions blindly, we propose that the robot should use the model’s current predictive accuracy to inform the degree of confidence in its future predictions. This model confidence inference allows us to generate probabilistic motion predictions that exploit modeled structure when the structure successfully explains human motion, and degrade gracefully whenever the human moves unexpectedly. We accomplish this by maintaining a Bayesian belief over a single parameter that governs the variance of our human motion model. We couple this prediction algorithm with a recently proposed robust motion planner and controller to guide the construction of robot trajectories that are, to a good approximation, collision-free with a high, user-specified probability. We provide extensive analysis of the combined approach and its overall safety properties by establishing a connection to reachability analysis, and conclude with a hardware demonstration in which a small quadcopter operates safely in the same space as a human pedestrian.

2020-01-29
Hoang Hai Nguyen, Kartik Palani, David Nicol.  2019.  Extensions of Network Reliability Analysis. 49th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2020). :88-99.

Network reliability studies properties of networks subjected to random failures of their components. It has been widely adopted to modeling and analyzing real-world problems across different domains, such as circuit design, genomics, databases, information propagation, network security, and many others. Two practical situations that usually arise from such problems are (i) the correlation between component failures and (ii) the uncertainty in failure probabilities. Previous work captured correlations by modeling component reliability using general Boolean expression of Bernoulli random variables. This paper extends such a model to address the second problem, where we investigate the use of Beta distributions to capture the variance of uncertainty. We call this new formalism the Beta uncertain graph. We study the reliability polynomials of Beta uncertain graphs as multivariate polynomials of Beta random variables and demonstrate the use of the model on two realistic examples. We also observe that the reliability distribution of a monotone Beta uncertain graph can be approximated by a Beta distribution, usually with high accuracy. Numerical results from Monte Carlo simulation of an approximation scheme and from two case studies strongly support this observation.

2020-03-31
Madiha Tabassum, Tomasz Kosiundefinedski, Alisa Frik, Nathan Malkin, Primal Wijesekera, Serge Egelman, Heather Lipford.  2019.  Investigating Users’ Preferences and Expectations for Always-Listening Voice Assistants. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.. 3(4):23.

Many consumers now rely on different forms of voice assistants, both stand-alone devices and those built into smartphones. Currently, these systems react to specific wake-words, such as "Alexa," "Siri," or "Ok Google." However, with advancements in natural language processing, the next generation of voice assistants could instead always listen to the acoustic environment and proactively provide services and recommendations based on conversations without being explicitly invoked. We refer to such devices as "always listening voice assistants" and explore expectations around their potential use. In this paper, we report on a 178-participant survey investigating the potential services people anticipate from such a device and how they feel about sharing their data for these purposes. Our findings reveal that participants can anticipate a wide range of services pertaining to a conversation; however, most of the services are very similar to those that existing voice assistants currently provide with explicit commands. Participants are more likely to consent to share a conversation when they do not find it sensitive, they are comfortable with the service and find it beneficial, and when they already own a stand-alone voice assistant. Based on our findings we discuss the privacy challenges in designing an always-listening voice assistant.

2020-07-09
Dawei Chu, Jingqiang Lin, Fengjun Li, Xiaokun Zhang, Qiongxiao Wang, Guangqi Liu.  2019.  Ticket Transparency: Accountable Single Sign-On with Privacy-Preserving Public Logs. International Conference on Security and Privacy in Communication Systems (SecureComm).

Single sign-on (SSO) is becoming more and more popular in the Internet. An SSO ticket issued by the identity provider (IdP) allows an entity to sign onto a relying party (RP) on behalf of the account enclosed in the ticket. To ensure its authenticity, an SSO ticket is digitally signed by the IdP and verified by the RP. However, recent security incidents indicate that a signing system (e.g., certification authority) might be compromised to sign fraudulent messages, even when it is well protected in accredited commercial systems. Compared with certification authorities, the online signing components of IdPs are even more exposed to adversaries and thus more vulnerable to such threats in practice. This paper proposes ticket transparency to provide accountable SSO services with privacy-preserving public logs against potentially fraudulent tickets issued by a compromised IdP. With this scheme, an IdP-signed ticket is accepted by the RP only if it is recorded in the public logs. It enables a user to check all his tickets in the public logs and detect any fraudulent ticket issued without his participation or authorization. We integrate blind signatures, identity-based encryption and Bloom filters in the design, to balance transparency, privacy and efficiency in these security-enhanced SSO services. To the best of our knowledge, this is the first attempt to solve the security problems caused by potentially intruded or compromised IdPs in the SSO services.