Biblio

Found 147 results

Filters: Keyword is steganography  [Clear All Filters]
2017-06-05
Zhao, Zengzhen, Guan, Qingxiao, Zhao, Xianfeng.  2016.  Constructing Near-optimal Double-layered Syndrome-Trellis Codes for Spatial Steganography. Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. :139–148.

In this paper, we present a new kind of near-optimal double-layered syndrome-trellis codes (STCs) for spatial domain steganography. The STCs can hide longer message or improve the security with the same-length message comparing to the previous double-layered STCs. In our scheme, according to the theoretical deduction we can more precisely divide the secret payload into two parts which will be embedded in the first layer and the second layer of the cover respectively with binary STCs. When embed the message, we encourage to realize the double-layered embedding by ±1 modifications. But in order to further decrease the modifications and improve the time efficient, we allow few pixels to be modified by ±2. Experiment results demonstrate that while applying this double-layered STCs to the adaptive steganographic algorithms, the embedding modifications become more concentrative and the number decreases, consequently the security of steganography is improved.

2017-08-18
Aljamea, Moudhi M., Iliopoulos, Costas S., Samiruzzaman, M..  2016.  Detection Of URL In Image Steganography. Proceedings of the International Conference on Internet of Things and Cloud Computing. :23:1–23:6.

Steganography is the science of hiding data within data. Either for the good purpose of secret communication or for the bad intention of leaking sensitive confidential data or embedding malicious code or URL. However, many different carrier file formats can be used to hide these data (network, audio, image..etc) but the most common steganography carrier is embedding secret data within images as it is considered to be the best and easiest way to hide all types of files (secret files) within an image using different formats (another image, text, video, virus, URL..etc). To the human eye, the changes in the image appearance with the hidden data can be imperceptible. In fact, images can be more than what we see with our eyes. Therefore, many solutions where proposed to help in detecting these hidden data but each solution have their own strong and weak points either by the limitation of resolving one type of image along with specific hiding technique and or most likely without extracting the hidden data. This paper intends to propose a novel detection approach that will concentrate on detecting any kind of hidden URL in all types of images and extract the hidden URL from the carrier image that used the LSB least significant bit hiding technique.

2017-08-22
Jakobsen, Sune K., Orlandi, Claudio.  2016.  How To Bootstrap Anonymous Communication. Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. :333–344.

We ask whether it is possible to anonymously communicate a large amount of data using only public (non-anonymous) communication together with a small anonymous channel. We think this is a central question in the theory of anonymous communication and to the best of our knowledge this is the first formal study in this direction. Towards this goal, we introduce the novel concept of anonymous steganography: think of a leaker Lea who wants to leak a large document to Joe the journalist. Using anonymous steganography Lea can embed this document in innocent looking communication on some popular website (such as cat videos on YouTube or funny memes on 9GAG). Then Lea provides Joe with a short decoding key dk which, when applied to the entire website, recovers the document while hiding the identity of Lea among the large number of users of the website. Our contributions include: Introducing and formally defining anonymous steganography, A construction showing that anonymous steganography is possible (which uses recent results in circuits obfuscation), A lower bound on the number of bits which are needed to bootstrap anonymous communication.

2017-08-18
Ramirez, Anthony, Fernandez, Alfredo.  2016.  MP4 Steganography: Analyzing and Detecting TCSteg. Proceedings of the 5th Annual Conference on Research in Information Technology. :2–6.

The MP4 files has become to most used video media file available, and will mostly likely remain at the top for some time to come. This makes MP4 files an interesting candidate for steganography. With its size and structure, it offers a challenge to steganography developers. While some attempts have been made to create a truly covert file, few are as successful as Martin Fiedler's TCSteg. TCSteg allows users to hide a TrueCrypt hidden volume in an MP4 file. The structure of the file makes it difficult to identify that a volume exists. In our analysis of TCSteg, we will show how Fielder's code works and how we may be able to detect the existence of steganography. We will then implement these methods in hope that other steganography analysis can use them to determine if an MP4 file is a carrier file. Finally, we will address the future of MP4 steganography.

2017-10-25
Chefranov, Alexander G., Narimani, Amir.  2016.  Participant Authenticating, Error Detecting, and 100% Multiple Errors Repairing Chang-Chen-Wang's Secret Sharing Method Enhancement. Proceedings of the 9th International Conference on Security of Information and Networks. :112–115.

Chang-Chen-Wang's (3,n) Secret grayscale image Sharing between n grayscale cover images method with participant Authentication and damaged pixels Repairing (SSAR) properties is analyzed; it restores the secret image from any three of the cover images used. We show that SSAR may fail, is not able fake participant recognizing, and has limited by 62.5% repairing ability. We propose SSAR (4,n) enhancement, SSAR-E, allowing 100% exact restoration of a corrupted pixel using any four of n covers, and recognizing a fake participant with the help of cryptographic hash functions with 5-bit values that allows better (vs. 4 bits) error detection. Using a special permutation with only one loop including all the secret image pixels, SSAR-E is able restoring all the secret image damaged pixels having just one correct pixel left. SSAR-E allows restoring the secret image to authorized parties only contrary to SSAR. The performance and size of cover images for SSAR-E are the same as for SSAR.

2017-08-18
Chefranov, Alexander G., Narimani, Amir.  2016.  Participant Authenticating, Error Detecting, and 100% Multiple Errors Repairing Chang-Chen-Wang's Secret Sharing Method Enhancement. Proceedings of the 9th International Conference on Security of Information and Networks. :112–115.

Chang-Chen-Wang's (3,n) Secret grayscale image Sharing between n grayscale cover images method with participant Authentication and damaged pixels Repairing (SSAR) properties is analyzed; it restores the secret image from any three of the cover images used. We show that SSAR may fail, is not able fake participant recognizing, and has limited by 62.5% repairing ability. We propose SSAR (4,n) enhancement, SSAR-E, allowing 100% exact restoration of a corrupted pixel using any four of n covers, and recognizing a fake participant with the help of cryptographic hash functions with 5-bit values that allows better (vs. 4 bits) error detection. Using a special permutation with only one loop including all the secret image pixels, SSAR-E is able restoring all the secret image damaged pixels having just one correct pixel left. SSAR-E allows restoring the secret image to authorized parties only contrary to SSAR. The performance and size of cover images for SSAR-E are the same as for SSAR.

2017-05-16
Kohls, Katharina, Holz, Thorsten, Kolossa, Dorothea, Pöpper, Christina.  2016.  SkypeLine: Robust Hidden Data Transmission for VoIP. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :877–888.

Internet censorship is used in many parts of the world to prohibit free access to online information. Different techniques such as IP address or URL blocking, DNS hijacking, or deep packet inspection are used to block access to specific content on the Internet. In response, several censorship circumvention systems were proposed that attempt to bypass existing filters. Especially systems that hide the communication in different types of cover protocols attracted a lot of attention. However, recent research results suggest that this kind of covert traffic can be easily detected by censors. In this paper, we present SkypeLine, a censorship circumvention system that leverages Direct-Sequence Spread Spectrum (DSSS) based steganography to hide information in Voice-over-IP (VoIP) communication. SkypeLine introduces two novel modulation techniques that hide data by modulating information bits on the voice carrier signal using pseudo-random, orthogonal noise sequences and repeating the spreading operation several times. Our design goals focus on undetectability in presence of a strong adversary and improved data rates. As a result, the hiding is inconspicuous, does not alter the statistical characteristics of the carrier signal, and is robust against alterations of the transmitted packets. We demonstrate the performance of SkypeLine based on two simulation studies that cover the theoretical performance and robustness. Our measurements demonstrate that the data rates achieved with our techniques substantially exceed existing DSSS approaches. Furthermore, we prove the real-world applicability of the presented system with an exemplary prototype for Skype.

2017-07-24
Jakobsen, Sune K., Orlandi, Claudio.  2016.  How To Bootstrap Anonymous Communication. Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. :333–344.

We ask whether it is possible to anonymously communicate a large amount of data using only public (non-anonymous) communication together with a small anonymous channel. We think this is a central question in the theory of anonymous communication and to the best of our knowledge this is the first formal study in this direction. Towards this goal, we introduce the novel concept of anonymous steganography: think of a leaker Lea who wants to leak a large document to Joe the journalist. Using anonymous steganography Lea can embed this document in innocent looking communication on some popular website (such as cat videos on YouTube or funny memes on 9GAG). Then Lea provides Joe with a short decoding key dk which, when applied to the entire website, recovers the document while hiding the identity of Lea among the large number of users of the website. Our contributions include: Introducing and formally defining anonymous steganography, A construction showing that anonymous steganography is possible (which uses recent results in circuits obfuscation), A lower bound on the number of bits which are needed to bootstrap anonymous communication.

Berndt, Sebastian, Liśkiewicz, Maciej.  2016.  Provable Secure Universal Steganography of Optimal Rate: Provably Secure Steganography Does Not Necessarily Imply One-Way Functions. Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. :81–92.

We present the first complexity-theoretic secure steganographic protocol which, for any communication channel, is provably secure, reliable, and has nearly optimal bandwidth. Our system is unconditionally secure, i.e. our proof does not rely on any unproven complexity-theoretic assumption, like e.g. the existence of one-way functions. This disproves the claim that the existence of one-way functions and access to a communication channel oracle are both necessary and sufficient conditions for the existence of secure steganography, in the sense that secure and reliable steganography exists independently of the existence of one-way functions.

2017-02-14
S. Majumdar, A. Maiti, A. Nath.  2015.  "New Secured Steganography Algorithm Using Encrypted Secret Message inside QRTM Code: System Implemented in Android Phone". 2015 International Conference on Computational Intelligence and Communication Networks (CICN). :1130-1134.

Steganography is a method of hiding information, whereas the goal of cryptography is to make data unreadable. Both of these methodologies have their own advantages and disadvantages. Encrypted messages are easily detectable. If someone is spying on communication channel for encrypted message, he/she can easily identify the encrypted messages. Encryption may draw unnecessary attention to the transferred messages. This may lead to cryptanalysis of the encrypted message if the spy tries to know the message. If the encryption technique is not strong enough, the message may be deciphered. In contrast, Steganography tries to hide the data from third party by smartly embedding the data to some other file which is not at all related to the message. Here care is to be taken to minimize the modification of the container file in the process of embedding data. But the disadvantage of steganography is that it is not as secure as cryptography. In the present method the authors have introduced three-step security. Firstly the secret message is encrypted using bit level columnar transposition method introduced by Nath et al and after that the encrypted message is embedded in some image file along with its size. Finally the modified image is encoded into a QR Code TM. The entire method has also been implemented for the Android mobile environment. This method may be used to transfer confidential message through Android mobile phone.

2017-02-27
Sun, H., Luo, H., Wu, T. Y., Obaidat, M. S..  2015.  A PSNR-Controllable Data Hiding Algorithm Based on LSBs Substitution. 2015 IEEE Global Communications Conference (GLOBECOM). :1–7.

There are more and more systems using mobile devices to perform sensing tasks, but these increase the risk of leakage of personal privacy and data. Data hiding is one of the important ways for information security. Even though many data hiding algorithms have worked on providing more hiding capacity or higher PSNR, there are few algorithms that can control PSNR effectively while ensuring hiding capacity. In this paper, with controllable PSNR based on LSBs substitution- PSNR-Controllable Data Hiding (PCDH), we first propose a novel encoding plan for data hiding. In PCDH, we use the remainder algorithm to calculate the hidden information, and hide the secret information in the last x LSBs of every pixel. Theoretical proof shows that this method can control the variation of stego image from cover image, and control PSNR by adjusting parameters in the remainder calculation. Then, we design the encoding and decoding algorithms with low computation complexity. Experimental results show that PCDH can control the PSNR in a given range while ensuring high hiding capacity. In addition, it can resist well some steganalysis. Compared to other algorithms, PCDH achieves better tradeoff among PSNR, hiding capacity, and computation complexity.

2017-02-23
S. Goyal, M. Ramaiya, D. Dubey.  2015.  "Improved Detection of 1-2-4 LSB Steganography and RSA Cryptography in Color and Grayscale Images". 2015 International Conference on Computational Intelligence and Communication Networks (CICN). :1120-1124.

Steganography is the art of the hidden data in such a way that it detection of hidden knowledge prevents. As the necessity of security and privacy increases, the need of the hiding secret data is ongoing. In this paper proposed an enhanced detection of the 1-2-4 LSB steganography and RSA cryptography in Gray Scale and Color images. For color images, we apply 1-2-4 LSB on component of the RGB, then encrypt information applying RSA technique. For Gray Images, we use LSB to then encrypt information and also detect edges of gray image. In the experimental outcomes, calculate PSNR and MSE. We calculate peak signal noise ratio for quality and brightness. This method makes sure that the information has been encrypted before hiding it into an input image. If in any case the cipher text got revealed from the input image, the middle person other than receiver can't access the information as it is in encrypted form.

2017-02-14
P. Das, S. C. Kushwaha, M. Chakraborty.  2015.  "Multiple embedding secret key image steganography using LSB substitution and Arnold Transform". 2015 2nd International Conference on Electronics and Communication Systems (ICECS). :845-849.

Cryptography and steganography are the two major fields available for data security. While cryptography is a technique in which the information is scrambled in an unintelligent gibberish fashion during transmission, steganography focuses on concealing the existence of the information. Combining both domains gives a higher level of security in which even if the use of covert channel is revealed, the true information will not be exposed. This paper focuses on concealing multiple secret images in a single 24-bit cover image using LSB substitution based image steganography. Each secret image is encrypted before hiding in the cover image using Arnold Transform. Results reveal that the proposed method successfully secures the high capacity data keeping the visual quality of transmitted image satisfactory.

S. Pund-Dange, C. G. Desai.  2015.  "Secured data communication system using RSA with mersenne primes and Steganography". 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom). :1306-1310.

To add multiple layers of security our present work proposes a method for integrating together cryptography and Steganography for secure communication using an image file. We have used here combination of cryptography and steganography that can hide a text in an image in such a way so as to prevent any possible suspicion of having a hidden text, after RSA cipher. It offers privacy and high security through the communication channel.

2017-02-13
R. Mishra, A. Mishra, P. Bhanodiya.  2015.  "An edge based image steganography with compression and encryption". 2015 International Conference on Computer, Communication and Control (IC4). :1-4.

Security of secret data has been a major issue of concern from ancient time. Steganography and cryptography are the two techniques which are used to reduce the security threat. Cryptography is an art of converting secret message in other than human readable form. Steganography is an art of hiding the existence of secret message. These techniques are required to protect the data theft over rapidly growing network. To achieve this there is a need of such a system which is very less susceptible to human visual system. In this paper a new technique is going to be introducing for data transmission over an unsecure channel. In this paper secret data is compressed first using LZW algorithm before embedding it behind any cover media. Data is compressed to reduce its size. After compression data encryption is performed to increase the security. Encryption is performed with the help of a key which make it difficult to get the secret message even if the existence of the secret message is reveled. Now the edge of secret message is detected by using canny edge detector and then embedded secret data is stored there with the help of a hash function. Proposed technique is implemented in MATLAB and key strength of this project is its huge data hiding capacity and least distortion in Stego image. This technique is applied over various images and the results show least distortion in altered image.

2015-05-04
Shinganjude, R.D., Theng, D.P..  2014.  Inspecting the Ways of Source Anonymity in Wireless Sensor Network. Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on. :705-707.

Sensor networks mainly deployed to monitor and report real events, and thus it is very difficult and expensive to achieve event source anonymity for it, as sensor networks are very limited in resources. Data obscurity i.e. the source anonymity problem implies that an unauthorized observer must be unable to detect the origin of events by analyzing the network traffic; this problem has emerged as an important topic in the security of wireless sensor networks. This work inspects the different approaches carried for attaining the source anonymity in wireless sensor network, with variety of techniques based on different adversarial assumptions. The approach meeting the best result in source anonymity is proposed for further improvement in the source location privacy. The paper suggests the implementation of most prominent and effective LSB Steganography technique for the improvement.

2015-05-06
Chouhan, D.S., Mahajan, R.P..  2014.  An architectural framework for encryption amp; generation of digital signature using DNA cryptography. Computing for Sustainable Global Development (INDIACom), 2014 International Conference on. :743-748.

As most of the modern encryption algorithms are broken fully/partially, the world of information security looks in new directions to protect the data it transmits. The concept of using DNA computing in the fields of cryptography has been identified as a possible technology that may bring forward a new hope for hybrid and unbreakable algorithms. Currently, several DNA computing algorithms are proposed for cryptography, cryptanalysis and steganography problems, and they are proven to be very powerful in these areas. This paper gives an architectural framework for encryption & Generation of digital signature using DNA Cryptography. To analyze the performance; the original plaintext size and the key size; together with the encryption and decryption time are examined also the experiments on plaintext with different contents are performed to test the robustness of the program.

Vegh, L., Miclea, L..  2014.  Enhancing security in cyber-physical systems through cryptographic and steganographic techniques. Automation, Quality and Testing, Robotics, 2014 IEEE International Conference on. :1-6.

Information technology is continually changing, discoveries are made every other day. Cyber-physical systems consist of both physical and computational elements and are becoming more and more popular in today's society. They are complex systems, used in complex applications. Therefore, security is a critical and challenging aspect when developing cyber-physical systems. In this paper, we present a solution for ensuring data confidentiality and security by combining some of the most common methods in the area of security - cryptography and steganography. Furthermore, we use hierarchical access to information to ensure confidentiality and also increase the overall security of the cyber-physical system.
 

2015-05-04
Skillen, A., Mannan, M..  2014.  Mobiflage: Deniable Storage Encryptionfor Mobile Devices. Dependable and Secure Computing, IEEE Transactions on. 11:224-237.

Data confidentiality can be effectively preserved through encryption. In certain situations, this is inadequate, as users may be coerced into disclosing their decryption keys. Steganographic techniques and deniable encryption algorithms have been devised to hide the very existence of encrypted data. We examine the feasibility and efficacy of deniable encryption for mobile devices. To address obstacles that can compromise plausibly deniable encryption (PDE) in a mobile environment, we design a system called Mobiflage. Mobiflage enables PDE on mobile devices by hiding encrypted volumes within random data in a devices free storage space. We leverage lessons learned from deniable encryption in the desktop environment, and design new countermeasures for threats specific to mobile systems. We provide two implementations for the Android OS, to assess the feasibility and performance of Mobiflage on different hardware profiles. MF-SD is designed for use on devices with FAT32 removable SD cards. Our MF-MTP variant supports devices that instead share a single internal partition for both apps and user accessible data. MF-MTP leverages certain Ext4 file system mechanisms and uses an adjusted data-block allocator. These new techniques for soring hidden volumes in Ext4 file systems can also be applied to other file systems to enable deniable encryption for desktop OSes and other mobile platforms.

2015-05-06
Rrushi, J.L..  2014.  A Steganographic Approach to Localizing Botmasters. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :852-859.

Law enforcement employs an investigative approach based on marked money bills to track illegal drug dealers. In this paper we discuss research that aims at providing law enforcement with the cyber counterpart of that approach in order to track perpetrators that operate botnets. We have devised a novel steganographic approach that generates a watermark hidden within a honey token, i.e. A decoy Word document. The covert bits that comprise the watermark are carried via secret interpretation of object properties in the honey token. The encoding and decoding of object properties into covert bits follow a scheme based on bijective functions generated via a chaotic logistic map. The watermark is retrievable via a secret cryptographic key, which is generated and held by law enforcement. The honey token is leaked to a botmaster via a honey net. In the paper, we elaborate on possible means by which law enforcement can track the leaked honey token to the IP address of a botmaster's machine.

2015-05-04
Putra, M.S.A., Budiman, G., Novamizanti, L..  2014.  Implementation of steganography using LSB with encrypted and compressed text using TEA-LZW on Android. Computer, Control, Informatics and Its Applications (IC3INA), 2014 International Conference on. :93-98.

The development of data communications enabling the exchange of information via mobile devices more easily. Security in the exchange of information on mobile devices is very important. One of the weaknesses in steganography is the capacity of data that can be inserted. With compression, the size of the data will be reduced. In this paper, designed a system application on the Android platform with the implementation of LSB steganography and cryptography using TEA to the security of a text message. The size of this text message may be reduced by performing lossless compression technique using LZW method. The advantages of this method is can provide double security and more messages to be inserted, so it is expected be a good way to exchange information data. The system is able to perform the compression process with an average ratio of 67.42 %. Modified TEA algorithm resulting average value of avalanche effect 53.8%. Average result PSNR of stego image 70.44 dB. As well as average MOS values is 4.8.

2021-02-08
Geetha, C. R., Basavaraju, S., Puttamadappa, C..  2013.  Variable load image steganography using multiple edge detection and minimum error replacement method. 2013 IEEE Conference on Information Communication Technologies. :53—58.

This paper proposes a steganography method using the digital images. Here, we are embedding the data which is to be secured into the digital image. Human Visual System proved that the changes in the image edges are insensitive to human eyes. Therefore we are using edge detection method in steganography to increase data hiding capacity by embedding more data in these edge pixels. So, if we can increase number of edge pixels, we can increase the amount of data that can be hidden in the image. To increase the number of edge pixels, multiple edge detection is employed. Edge detection is carried out using more sophisticated operator like canny operator. To compensate for the resulting decrease in the PSNR because of increase in the amount of data hidden, Minimum Error Replacement [MER] method is used. Therefore, the main goal of image steganography i.e. security with highest embedding capacity and good visual qualities are achieved. To extract the data we need the original image and the embedding ratio. Extraction is done by taking multiple edges detecting the original image and the data is extracted corresponding to the embedding ratio.