Biblio

Found 4288 results

Filters: Keyword is security  [Clear All Filters]
2017-12-12
Rezaeibagha, F., Mu, Y..  2017.  Access Control Policy Combination from Similarity Analysis for Secure Privacy-Preserved EHR Systems. 2017 IEEE Trustcom/BigDataSE/ICESS. :386–393.

In distributed systems, there is often a need to combine the heterogeneous access control policies to offer more comprehensive services to users in the local or national level. A large scale healthcare system is usually distributed in a computer network and might require sophisticated access control policies to protect the system. Therefore, the need for integrating the electronic healthcare systems might be important to provide a comprehensive care for patients while preserving patients' privacy and data security. However, there are major impediments in healthcare systems concerning not well-defined and flexible access control policy implementations, hindering the progress towards secure integrated systems. In this paper, we introduce an access control policy combination framework for EHR systems that preserves patients' privacy and ensures data security. We achieve our goal through an access control mechanism which handles multiple access control policies through a similarity analysis phase. In that phase, we evaluate different XACML policies to decide whether or not a policy combination is applicable. We have provided a case study to show the applicability of our proposed approach based on XACML. Our study results can be applied to the electronic health record (EHR) access control policy, which fosters interoperability and scalability among healthcare providers while preserving patients' privacy and data security. 

2017-12-20
Schulz, A., Kotson, M., Meiners, C., Meunier, T., O’Gwynn, D., Trepagnier, P., Weller-Fahy, D..  2017.  Active Dependency Mapping: A Data-Driven Approach to Mapping Dependencies in Distributed Systems. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :84–91.

We introduce Active Dependency Mapping (ADM), a method for establishing dependency relations among a set of interdependent services. The approach is to artificially degrade network performance to infer which assets on the network support a particular process. Artificial degradation of the network environment could be transparent to users; run continuously it could identify dependencies that are rare or occur only at certain timescales. A useful byproduct of this dependency analysis is a quantitative assessment of the resilience and robustness of the system. This technique is intriguing for hardening both enterprise networks and cyber physical systems. We present a proof-of-concept experiment executed on a real-world set of interrelated software services. We assess the efficacy of the approach, discuss current limitations, and suggest options for future development of ADM.

2018-11-14
Keenan, T. P..  2017.  Alice in Blockchains: Surprising Security Pitfalls in PoW and PoS Blockchain Systems. 2017 15th Annual Conference on Privacy, Security and Trust (PST). :400–4002.

If, as most experts agree, the mathematical basis of major blockchain systems is (probably if not provably) sound, why do they have a bad reputation? Human misbehavior (such as failed Bitcoin exchanges) accounts for some of the issues, but there are also deeper and more interesting vulnerabilities here. These include design faults and code-level implementation defects, ecosystem issues (such as wallets), as well as approaches such as the "51% attack" all of which can compromise the integrity of blockchain systems. With particular attention to the emerging non-financial applications of blockchain technology, this paper demonstrates the kinds of attacks that are possible and provides suggestions for minimizing the risks involved.

2018-04-11
Cornell, N., Nepal, K..  2017.  Combinational Hardware Trojan Detection Using Logic Implications. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). :571–574.

This paper provides a proof-of-concept demonstration of the potential benefit of using logical implications for detection of combinational hardware trojans. Using logic simulation, valid logic implications are selected and added to to the checker circuitry to detect payload delivery by a combinational hardware trojan. Using combinational circuits from the ISCAS benchmark suite, and a modest hardware budget for the checker, simulation results show that the probability of a trojan escaping detection using our approach was only 16%.

2017-12-28
El-Khamy, S. E., Korany, N. O., El-Sherif, M. H..  2017.  Correlation based highly secure image hiding in audio signals using wavelet decomposition and chaotic maps hopping for 5G multimedia communications. 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). :1–3.

Audio Steganography is the technique of hiding any secret information behind a cover audio file without impairing its quality. Data hiding in audio signals has various applications such as secret communications and concealing data that may influence the security and safety of governments and personnel and has possible important applications in 5G communication systems. This paper proposes an efficient secure steganography scheme based on the high correlation between successive audio signals. This is similar to the case of differential pulse coding modulation technique (DPCM) where encoding uses the redundancy in sample values to encode the signals with lower bit rate. Discrete Wavelet Transform (DWT) of audio samples is used to store hidden data in the least important coefficients of Haar transform. We use the benefit of the small differences between successive samples generated from encoding of the cover audio signal wavelet coefficients to hide image data without making a remarkable change in the cover audio signal. instead of changing of actual audio samples so this doesn't perceptually degrade the audio signal and provides higher hiding capacity with lower distortion. To further increase the security of the image hiding process, the image to be hidden is divided into blocks and the bits of each block are XORed with a different random sequence of logistic maps using hopping technique. The performance of the proposed algorithm has been estimated extensively against attacks and experimental results show that the proposed method achieves good robustness and imperceptibility.

2017-12-20
Rubin, S. H., Grefe, W. K., Bouabana-Tebibel, T., Chen, S. C., Shyu, M. L., Simonsen, K. S..  2017.  Cyber-Secure UAV Communications Using Heuristically Inferred Stochastic Grammars and Hard Real-Time Adaptive Waveform Synthesis and Evolution. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :9–15.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
2018-02-06
Marciani, G., Porretta, M., Nardelli, M., Italiano, G. F..  2017.  A Data Streaming Approach to Link Mining in Criminal Networks. 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW). :138–143.

The ability to discover patterns of interest in criminal networks can support and ease the investigation tasks by security and law enforcement agencies. By considering criminal networks as a special case of social networks, we can properly reuse most of the state-of-the-art techniques to discover patterns of interests, i.e., hidden and potential links. Nevertheless, in time-sensible scenarios, like the one involving criminal actions, the ability to discover patterns in a (near) real-time manner can be of primary importance.In this paper, we investigate the identification of patterns for link detection and prediction on an evolving criminal network. To extract valuable information as soon as data is generated, we exploit a stream processing approach. To this end, we also propose three new similarity social network metrics, specifically tailored for criminal link detection and prediction. Then, we develop a flexible data stream processing application relying on the Apache Flink framework; this solution allows us to deploy and evaluate the newly proposed metrics as well as the ones existing in literature. The experimental results show that the new metrics we propose can reach up to 83% accuracy in detection and 82% accuracy in prediction, resulting competitive with the state of the art metrics.

2018-04-02
Wu, D., Zhang, Y., Liu, Y..  2017.  Dummy Location Selection Scheme for K-Anonymity in Location Based Services. 2017 IEEE Trustcom/BigDataSE/ICESS. :441–448.

Location-Based Service (LBS) becomes increasingly important for our daily life. However, the localization information in the air is vulnerable to various attacks, which result in serious privacy concerns. To overcome this problem, we formulate a multi-objective optimization problem with considering both the query probability and the practical dummy location region. A low complexity dummy location selection scheme is proposed. We first find several candidate dummy locations with similar query probabilities. Among these selected candidates, a cloaking area based algorithm is then offered to find K - 1 dummy locations to achieve K-anonymity. The intersected area between two dummy locations is also derived to assist to determine the total cloaking area. Security analysis verifies the effectiveness of our scheme against the passive and active adversaries. Compared with other methods, simulation results show that the proposed dummy location scheme can improve the privacy level and enlarge the cloaking area simultaneously.

2017-12-20
Dong, B., Wang, H.(.  2017.  EARRING: Efficient Authentication of Outsourced Record Matching. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :225–234.

Cloud computing enables the outsourcing of big data analytics, where a third-party server is responsible for data management and processing. In this paper, we consider the outsourcing model in which a third-party server provides record matching as a service. In particular, given a target record, the service provider returns all records from the outsourced dataset that match the target according to specific distance metrics. Identifying matching records in databases plays an important role in information integration and entity resolution. A major security concern of this outsourcing paradigm is whether the service provider returns the correct record matching results. To solve the problem, we design EARRING, an Efficient Authentication of outsouRced Record matchING framework. EARRING requires the service provider to construct the verification object (VO) of the record matching results. From the VO, the client is able to catch any incorrect result with cheap computational cost. Experiment results on real-world datasets demonstrate the efficiency of EARRING.

Lin, J., Li, Q., Yang, J..  2017.  Frequency diverse array beamforming for physical-layer security with directionally-aligned legitimate user and eavesdropper. 2017 25th European Signal Processing Conference (EUSIPCO). :2166–2170.
The conventional physical-layer (PHY) security approaches, e.g., transmit beamforming and artificial noise (AN)-based design, may fail when the channels of legitimate user (LU) and eavesdropper (Eve) are close correlated. Due to the highly directional transmission feature of millimeter-wave (mmWave), this may occur in mmWave transmissions as the transmitter, Eve and LU are aligned in the same direction exactly. To handle the PHY security problem with directionally-aligned LU and Eve, we propose a novel frequency diverse array (FDA) beamforming approach to differentiating the LU and Eve. By intentionally introducing some frequency offsets across the antennas, the FDA beamforming generates an angle-range dependent beampattern. As a consequence, it can degrade the Eve's reception and thus achieve PHY security. In this paper, we maximize the secrecy rate by jointly optimizing the frequency offsets and the beamformer. This secrecy rate maximization (SRM) problem is hard to solve due to the tightly coupled variables. Nevertheless, we show that it can be reformulated into a form depending only on the frequency offsets. Building upon this reformulation, we identify some cases where the SRM problem can be optimally solved in closed form. Numerical results demonstrate the efficacy of FDA beamforming in achieving PHY security, even for aligned LU and Eve.
Ulz, T., Pieber, T., Steger, C., Haas, S., Matischek, R., Bock, H..  2017.  Hardware-Secured Configuration and Two-Layer Attestation Architecture for Smart Sensors. 2017 Euromicro Conference on Digital System Design (DSD). :229–236.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
2017-12-12
Gamachchi, A., Boztas, S..  2017.  Insider Threat Detection Through Attributed Graph Clustering. 2017 IEEE Trustcom/BigDataSE/ICESS. :112–119.

While most organizations continue to invest in traditional network defences, a formidable security challenge has been brewing within their own boundaries. Malicious insiders with privileged access in the guise of a trusted source have carried out many attacks causing far reaching damage to financial stability, national security and brand reputation for both public and private sector organizations. Growing exposure and impact of the whistleblower community and concerns about job security with changing organizational dynamics has further aggravated this situation. The unpredictability of malicious attackers, as well as the complexity of malicious actions, necessitates the careful analysis of network, system and user parameters correlated with insider threat problem. Thus it creates a high dimensional, heterogeneous data analysis problem in isolating suspicious users. This research work proposes an insider threat detection framework, which utilizes the attributed graph clustering techniques and outlier ranking mechanism for enterprise users. Empirical results also confirm the effectiveness of the method by achieving the best area under curve value of 0.7648 for the receiver operating characteristic curve.

2017-12-20
Salleh, A., Mamat, K., Darus, M. Y..  2017.  Integration of wireless sensor network and Web of Things: Security perspective. 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC). :138–143.
Wireless Sensor Network (WSN) are spread everywhere throughout the world and are ordinarily used to gather physical data from the encompassing scene. WSN play a focal part in the Internet of Things (IoT) vision. WSN is rising as a noticeable component in the middleware connecting together the Internet of Things (IoT) and the Web of Things (WoT). But the integration of WSN to WoT brings new challenges that cannot be solved in a satisfactory way with traditional layer of security. This paper examined the security issue of integration between WSN and WoT, aiming to shed light on how the WSN and WoT security issue are understood and applied, both in academia and industries. This paper introduces security perfective of integration WSN to WoT which offers capabilities to identify and connect worldwide physical objects into a unified system. As a part of the integration, serious concerns are raised over access of personal information pertaining to device (smart thing) and individual privacy. The motivation of this paper is to summarizes the security threats of the integration and suggestion to mitigate the threat.
2018-06-20
Joshi, V. B., Goudar, R. H..  2017.  Intrusion detection systems in MANETs using hybrid techniques. 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon). :534–538.

The use of self organized wireless technologies called as Mobile Ad Hoc Networks (MANETs) has increased and these wireless devices can be deployed anywhere without any infrastructural support or without any base station, hence securing these networks and preventing from Intrusions is necessary. This paper describes a method for securing the MANETs using Hybrid cryptographic technique which uses RSA and AES algorithm along with SHA 256 Hashing technique. This hybrid cryptographic technique provides authentication to the data. To check whether there is any malicious node present, an Intrusion Detection system (IDS) technique called Enhanced Adaptive Acknowledgement (EAACK) is used, which checks for the acknowledgement packets to detect any malicious node present in the system. The routing of packets is done through two protocols AODV and ZRP and both the results are compared. The ZRP protocol when used for routing provides better performance as compared to AODV.

2018-02-21
Wang, C., Xie, H., Bie, Z., Yan, C., Lin, Y..  2017.  Reliability evaluation of AC/DC hybrid power grid considering transient security constraints. 2017 13th IEEE Conference on Automation Science and Engineering (CASE). :1237–1242.

With the rapid development of DC transmission technology and High Voltage Direct Current (HVDC) programs, the reliability of AC/DC hybrid power grid draws more and more attentions. The paper takes both the system static and dynamic characteristics into account, and proposes a novel AC/DC hybrid system reliability evaluation method considering transient security constraints based on Monte-Carlo method and transient stability analytical method. The interaction of AC system and DC system after fault is considered in evaluation process. The transient stability analysis is performed firstly when fault occurs in the system and BPA software is applied to the analysis to improve the computational accuracy and speed. Then the new system state is generated according to the transient analysis results. Then a minimum load shedding model of AC/DC hybrid system with HVDC is proposed. And then adequacy analysis is taken to the new state. The proposed method can evaluate the reliability of AC/DC hybrid grid more comprehensively and reduce the complexity of problem which is tested by IEEE-RTS 96 system and an actual large-scale system.

2017-12-12
Massonet, P., Deru, L., Achour, A., Dupont, S., Croisez, L. M., Levin, A., Villari, M..  2017.  Security in Lightweight Network Function Virtualisation for Federated Cloud and IoT. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :148–154.

Smart IoT applications require connecting multiple IoT devices and networks with multiple services running in fog and cloud computing platforms. One approach to connecting IoT devices with cloud and fog services is to create a federated virtual network. The main benefit of this approach is that IoT devices can then interact with multiple remote services using an application specific federated network where no traffic from other applications passes. This federated network spans multiple cloud platforms and IoT networks but it can be managed as a single entity. From the point of view of security, federated virtual networks can be managed centrally and be secured with a coherent global network security policy. This does not mean that the same security policy applies everywhere, but that the different security policies are specified in a single coherent security policy. In this paper we propose to extend a federated cloud networking security architecture so that it can secure IoT devices and networks. The federated network is extended to the edge of IoT networks by integrating a federation agent in an IoT gateway or network controller (Can bus, 6LowPan, Lora, ...). This allows communication between the federated cloud network and the IoT network. The security architecture is based on the concepts of network function virtualisation (NFV) and service function chaining (SFC) for composing security services. The IoT network and devices can then be protected by security virtual network functions (VNF) running at the edge of the IoT network.

2018-10-26
Tiwari, V., Chaurasia, B. K..  2017.  Security issues in fog computing using vehicular cloud. 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC). :1–4.

In the near future, vehicular cloud will help to improve traffic safety and efficiency. Unfortunately, a computing of vehicular cloud and fog cloud faced a set of challenges in security, authentication, privacy, confidentiality and detection of misbehaving vehicles. In addition to, there is a need to recognize false messages from received messages in VANETs during moving on the road. In this work, the security issues and challenges for computing in the vehicular cloud over for computing is studied.

2018-04-02
Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Security Modeling and Analysis of Cross-Protocol IoT Devices. 2017 IEEE Trustcom/BigDataSE/ICESS. :1043–1048.

In the Internet of Things (IoT), smart devices are connected using various communication protocols, such as Wi-Fi, ZigBee. Some IoT devices have multiple built-in communication modules. If an IoT device equipped with multiple communication protocols is compromised by an attacker using one communication protocol (e.g., Wi-Fi), it can be exploited as an entry point to the IoT network. Another protocol (e.g., ZigBee) of this IoT device could be used to exploit vulnerabilities of other IoT devices using the same communication protocol. In order to find potential attacks caused by this kind of cross-protocol devices, we group IoT devices based on their communication protocols and construct a graphical security model for each group of devices using the same communication protocol. We combine the security models via the cross-protocol devices and compute hidden attack paths traversing different groups of devices. We use two use cases in the smart home scenario to demonstrate our approach and discuss some feasible countermeasures.

2018-06-11
Sepulveda, J., Fernandes, R., Marcon, C., Florez, D., Sigl, G..  2017.  A security-aware routing implementation for dynamic data protection in zone-based MPSoC. 2017 30th Symposium on Integrated Circuits and Systems Design (SBCCI). :59–64.
This work proposes a secure Network-on-Chip (NoC) approach, which enforces the encapsulation of sensitive traffic inside the asymmetrical security zones while using minimal and non-minimal paths. The NoC routing guarantees that the sensitive traffic communicates only through trusted nodes, which belong to a security zone. As the shape of the zones may change during operation, the sensitive traffic must be routed through low-risk paths. The experimental results show that this proposal can be an efficient and scalable alternative for enforcing the data protection inside a Multi-Processor System-on-Chip (MPSoC).
2018-03-05
Messai, M. L., Seba, H..  2017.  A Self-Healing Key Pre-Distribution Scheme for Multi-Phase Wireless Sensor Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :144–151.

Node compromising is still the most hard attack in Wireless Sensor Networks (WSNs). It affects key distribution which is a building block in securing communications in any network. The weak point of several roposed key distribution schemes in WSNs is their lack of resilience to node compromising attacks. When a node is compromised, all its key material is revealed leading to insecure communication links throughout the network. This drawback is more harmful for long-lived WSNs that are deployed in multiple phases, i.e., Multi-phase WSNs (MPWSNs). In the last few years, many key management schemes were proposed to ensure security in WSNs. However, these schemes are conceived for single phase WSNs and their security degrades with time when an attacker captures nodes. To deal with this drawback and enhance the resilience to node compromising over the whole lifetime of the network, we propose in this paper, a new key pre-distribution scheme adapted to MPWSNs. Our scheme takes advantage of the resilience improvement of Q-composite key scheme and adds self-healing which is the ability of the scheme to decrease the effect of node compromising over time. Self-healing is achieved by pre-distributing each generation with fresh keys. The evaluation of our scheme proves that it has a good key connectivity and a high resilience to node compromising attack compared to existing key management schemes.

2018-01-23
Acar, A., Celik, Z. B., Aksu, H., Uluagac, A. S., McDaniel, P..  2017.  Achieving Secure and Differentially Private Computations in Multiparty Settings. 2017 IEEE Symposium on Privacy-Aware Computing (PAC). :49–59.

Sharing and working on sensitive data in distributed settings from healthcare to finance is a major challenge due to security and privacy concerns. Secure multiparty computation (SMC) is a viable panacea for this, allowing distributed parties to make computations while the parties learn nothing about their data, but the final result. Although SMC is instrumental in such distributed settings, it does not provide any guarantees not to leak any information about individuals to adversaries. Differential privacy (DP) can be utilized to address this; however, achieving SMC with DP is not a trivial task, either. In this paper, we propose a novel Secure Multiparty Distributed Differentially Private (SM-DDP) protocol to achieve secure and private computations in a multiparty environment. Specifically, with our protocol, we simultaneously achieve SMC and DP in distributed settings focusing on linear regression on horizontally distributed data. That is, parties do not see each others’ data and further, can not infer information about individuals from the final constructed statistical model. Any statistical model function that allows independent calculation of local statistics can be computed through our protocol. The protocol implements homomorphic encryption for SMC and functional mechanism for DP to achieve the desired security and privacy guarantees. In this work, we first introduce the theoretical foundation for the SM-DDP protocol and then evaluate its efficacy and performance on two different datasets. Our results show that one can achieve individual-level privacy through the proposed protocol with distributed DP, which is independently applied by each party in a distributed fashion. Moreover, our results also show that the SM-DDP protocol incurs minimal computational overhead, is scalable, and provides security and privacy guarantees.

2018-08-23
Yue, L., Junqin, H., Shengzhi, Q., Ruijin, W..  2017.  Big Data Model of Security Sharing Based on Blockchain. 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM). :117–121.

The rise of big data age in the Internet has led to the explosive growth of data size. However, trust issue has become the biggest problem of big data, leading to the difficulty in data safe circulation and industry development. The blockchain technology provides a new solution to this problem by combining non-tampering, traceable features with smart contracts that automatically execute default instructions. In this paper, we present a credible big data sharing model based on blockchain technology and smart contract to ensure the safe circulation of data resources.

2017-12-28
Shih, M. H., Chang, J. M..  2017.  Design and analysis of high performance crypt-NoSQL. 2017 IEEE Conference on Dependable and Secure Computing. :52–59.

NoSQL databases have become popular with enterprises due to their scalable and flexible storage management of big data. Nevertheless, their popularity also brings up security concerns. Most NoSQL databases lacked secure data encryption, relying on developers to implement cryptographic methods at application level or middleware layer as a wrapper around the database. While this approach protects the integrity of data, it increases the difficulty of executing queries. We were motivated to design a system that not only provides NoSQL databases with the necessary data security, but also supports the execution of query over encrypted data. Furthermore, how to exploit the distributed fashion of NoSQL databases to deliver high performance and scalability with massive client accesses is another important challenge. In this research, we introduce Crypt-NoSQL, the first prototype to support execution of query over encrypted data on NoSQL databases with high performance. Three different models of Crypt-NoSQL were proposed and performance was evaluated with Yahoo! Cloud Service Benchmark (YCSB) considering an enormous number of clients. Our experimental results show that Crypt-NoSQL can process queries over encrypted data with high performance and scalability. A guidance of establishing service level agreement (SLA) for Crypt-NoSQL as a cloud service is also proposed.

2018-01-10
Frumento, Enrico, Freschi, Federica, Andreoletti, Davide, Consoli, Angelo.  2017.  Victim Communication Stack (VCS): A Flexible Model to Select the Human Attack Vector. Proceedings of the 12th International Conference on Availability, Reliability and Security. :50:1–50:6.
Information security has rapidly grown to meet the requirements of today services. A solid discipline has been developed as far as technical security is concerned. However, the human layer plays an increasingly decisive role in the managing of Information Technology (IT) systems. The research field that studies the vulnerabilities of the human layer is referred to as Social Engineering, and has not received the same attention of its technical counterpart. We try to partially fill this gap by studying the selection of the Human Attack Vector (HAV), i.e., the path or the means that the attacker uses to compromise the human layer. To this aim, we propose a multilayer model, named Victim Communication Stack (VCS), that provides the key elements to facilitate the choice of the HAV. This work has been carried out under the DOGANA European project.
2018-05-09
Wang, Z., Hu, H., Zhang, C..  2017.  On achieving SDN controller diversity for improved network security using coloring algorithm. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). :1270–1275.

The SDN (Software Defined Networking) paradigm rings flexibility to the network management and is an enabler to offer huge opportunities for network programmability. And, to solve the scalability issue raised by the centralized architecture of SDN, multi-controllers deployment (or distributed controllers system) is envisioned. In this paper, we focus on increasing the diversity of SDN control plane so as to enhance the network security. Our goal is to limit the ability of a malicious controller to compromise its neighboring controllers, and by extension, the rest of the controllers. We investigate a heterogeneous Susceptible-Infectious-Susceptible (SIS) epidemic model to evaluate the security performance and propose a coloring algorithm to increase the diversity based on community detection. And the simulation results demonstrate that our algorithm can reduce infection rate in control plane and our work shows that diversity must be introduced in network design for network security.