Biblio
In distributed systems, there is often a need to combine the heterogeneous access control policies to offer more comprehensive services to users in the local or national level. A large scale healthcare system is usually distributed in a computer network and might require sophisticated access control policies to protect the system. Therefore, the need for integrating the electronic healthcare systems might be important to provide a comprehensive care for patients while preserving patients' privacy and data security. However, there are major impediments in healthcare systems concerning not well-defined and flexible access control policy implementations, hindering the progress towards secure integrated systems. In this paper, we introduce an access control policy combination framework for EHR systems that preserves patients' privacy and ensures data security. We achieve our goal through an access control mechanism which handles multiple access control policies through a similarity analysis phase. In that phase, we evaluate different XACML policies to decide whether or not a policy combination is applicable. We have provided a case study to show the applicability of our proposed approach based on XACML. Our study results can be applied to the electronic health record (EHR) access control policy, which fosters interoperability and scalability among healthcare providers while preserving patients' privacy and data security.
We introduce Active Dependency Mapping (ADM), a method for establishing dependency relations among a set of interdependent services. The approach is to artificially degrade network performance to infer which assets on the network support a particular process. Artificial degradation of the network environment could be transparent to users; run continuously it could identify dependencies that are rare or occur only at certain timescales. A useful byproduct of this dependency analysis is a quantitative assessment of the resilience and robustness of the system. This technique is intriguing for hardening both enterprise networks and cyber physical systems. We present a proof-of-concept experiment executed on a real-world set of interrelated software services. We assess the efficacy of the approach, discuss current limitations, and suggest options for future development of ADM.
If, as most experts agree, the mathematical basis of major blockchain systems is (probably if not provably) sound, why do they have a bad reputation? Human misbehavior (such as failed Bitcoin exchanges) accounts for some of the issues, but there are also deeper and more interesting vulnerabilities here. These include design faults and code-level implementation defects, ecosystem issues (such as wallets), as well as approaches such as the "51% attack" all of which can compromise the integrity of blockchain systems. With particular attention to the emerging non-financial applications of blockchain technology, this paper demonstrates the kinds of attacks that are possible and provides suggestions for minimizing the risks involved.
This paper provides a proof-of-concept demonstration of the potential benefit of using logical implications for detection of combinational hardware trojans. Using logic simulation, valid logic implications are selected and added to to the checker circuitry to detect payload delivery by a combinational hardware trojan. Using combinational circuits from the ISCAS benchmark suite, and a modest hardware budget for the checker, simulation results show that the probability of a trojan escaping detection using our approach was only 16%.
Audio Steganography is the technique of hiding any secret information behind a cover audio file without impairing its quality. Data hiding in audio signals has various applications such as secret communications and concealing data that may influence the security and safety of governments and personnel and has possible important applications in 5G communication systems. This paper proposes an efficient secure steganography scheme based on the high correlation between successive audio signals. This is similar to the case of differential pulse coding modulation technique (DPCM) where encoding uses the redundancy in sample values to encode the signals with lower bit rate. Discrete Wavelet Transform (DWT) of audio samples is used to store hidden data in the least important coefficients of Haar transform. We use the benefit of the small differences between successive samples generated from encoding of the cover audio signal wavelet coefficients to hide image data without making a remarkable change in the cover audio signal. instead of changing of actual audio samples so this doesn't perceptually degrade the audio signal and provides higher hiding capacity with lower distortion. To further increase the security of the image hiding process, the image to be hidden is divided into blocks and the bits of each block are XORed with a different random sequence of logistic maps using hopping technique. The performance of the proposed algorithm has been estimated extensively against attacks and experimental results show that the proposed method achieves good robustness and imperceptibility.
The ability to discover patterns of interest in criminal networks can support and ease the investigation tasks by security and law enforcement agencies. By considering criminal networks as a special case of social networks, we can properly reuse most of the state-of-the-art techniques to discover patterns of interests, i.e., hidden and potential links. Nevertheless, in time-sensible scenarios, like the one involving criminal actions, the ability to discover patterns in a (near) real-time manner can be of primary importance.In this paper, we investigate the identification of patterns for link detection and prediction on an evolving criminal network. To extract valuable information as soon as data is generated, we exploit a stream processing approach. To this end, we also propose three new similarity social network metrics, specifically tailored for criminal link detection and prediction. Then, we develop a flexible data stream processing application relying on the Apache Flink framework; this solution allows us to deploy and evaluate the newly proposed metrics as well as the ones existing in literature. The experimental results show that the new metrics we propose can reach up to 83% accuracy in detection and 82% accuracy in prediction, resulting competitive with the state of the art metrics.
Location-Based Service (LBS) becomes increasingly important for our daily life. However, the localization information in the air is vulnerable to various attacks, which result in serious privacy concerns. To overcome this problem, we formulate a multi-objective optimization problem with considering both the query probability and the practical dummy location region. A low complexity dummy location selection scheme is proposed. We first find several candidate dummy locations with similar query probabilities. Among these selected candidates, a cloaking area based algorithm is then offered to find K - 1 dummy locations to achieve K-anonymity. The intersected area between two dummy locations is also derived to assist to determine the total cloaking area. Security analysis verifies the effectiveness of our scheme against the passive and active adversaries. Compared with other methods, simulation results show that the proposed dummy location scheme can improve the privacy level and enlarge the cloaking area simultaneously.
Cloud computing enables the outsourcing of big data analytics, where a third-party server is responsible for data management and processing. In this paper, we consider the outsourcing model in which a third-party server provides record matching as a service. In particular, given a target record, the service provider returns all records from the outsourced dataset that match the target according to specific distance metrics. Identifying matching records in databases plays an important role in information integration and entity resolution. A major security concern of this outsourcing paradigm is whether the service provider returns the correct record matching results. To solve the problem, we design EARRING, an Efficient Authentication of outsouRced Record matchING framework. EARRING requires the service provider to construct the verification object (VO) of the record matching results. From the VO, the client is able to catch any incorrect result with cheap computational cost. Experiment results on real-world datasets demonstrate the efficiency of EARRING.
While most organizations continue to invest in traditional network defences, a formidable security challenge has been brewing within their own boundaries. Malicious insiders with privileged access in the guise of a trusted source have carried out many attacks causing far reaching damage to financial stability, national security and brand reputation for both public and private sector organizations. Growing exposure and impact of the whistleblower community and concerns about job security with changing organizational dynamics has further aggravated this situation. The unpredictability of malicious attackers, as well as the complexity of malicious actions, necessitates the careful analysis of network, system and user parameters correlated with insider threat problem. Thus it creates a high dimensional, heterogeneous data analysis problem in isolating suspicious users. This research work proposes an insider threat detection framework, which utilizes the attributed graph clustering techniques and outlier ranking mechanism for enterprise users. Empirical results also confirm the effectiveness of the method by achieving the best area under curve value of 0.7648 for the receiver operating characteristic curve.
The use of self organized wireless technologies called as Mobile Ad Hoc Networks (MANETs) has increased and these wireless devices can be deployed anywhere without any infrastructural support or without any base station, hence securing these networks and preventing from Intrusions is necessary. This paper describes a method for securing the MANETs using Hybrid cryptographic technique which uses RSA and AES algorithm along with SHA 256 Hashing technique. This hybrid cryptographic technique provides authentication to the data. To check whether there is any malicious node present, an Intrusion Detection system (IDS) technique called Enhanced Adaptive Acknowledgement (EAACK) is used, which checks for the acknowledgement packets to detect any malicious node present in the system. The routing of packets is done through two protocols AODV and ZRP and both the results are compared. The ZRP protocol when used for routing provides better performance as compared to AODV.
With the rapid development of DC transmission technology and High Voltage Direct Current (HVDC) programs, the reliability of AC/DC hybrid power grid draws more and more attentions. The paper takes both the system static and dynamic characteristics into account, and proposes a novel AC/DC hybrid system reliability evaluation method considering transient security constraints based on Monte-Carlo method and transient stability analytical method. The interaction of AC system and DC system after fault is considered in evaluation process. The transient stability analysis is performed firstly when fault occurs in the system and BPA software is applied to the analysis to improve the computational accuracy and speed. Then the new system state is generated according to the transient analysis results. Then a minimum load shedding model of AC/DC hybrid system with HVDC is proposed. And then adequacy analysis is taken to the new state. The proposed method can evaluate the reliability of AC/DC hybrid grid more comprehensively and reduce the complexity of problem which is tested by IEEE-RTS 96 system and an actual large-scale system.
Smart IoT applications require connecting multiple IoT devices and networks with multiple services running in fog and cloud computing platforms. One approach to connecting IoT devices with cloud and fog services is to create a federated virtual network. The main benefit of this approach is that IoT devices can then interact with multiple remote services using an application specific federated network where no traffic from other applications passes. This federated network spans multiple cloud platforms and IoT networks but it can be managed as a single entity. From the point of view of security, federated virtual networks can be managed centrally and be secured with a coherent global network security policy. This does not mean that the same security policy applies everywhere, but that the different security policies are specified in a single coherent security policy. In this paper we propose to extend a federated cloud networking security architecture so that it can secure IoT devices and networks. The federated network is extended to the edge of IoT networks by integrating a federation agent in an IoT gateway or network controller (Can bus, 6LowPan, Lora, ...). This allows communication between the federated cloud network and the IoT network. The security architecture is based on the concepts of network function virtualisation (NFV) and service function chaining (SFC) for composing security services. The IoT network and devices can then be protected by security virtual network functions (VNF) running at the edge of the IoT network.
In the near future, vehicular cloud will help to improve traffic safety and efficiency. Unfortunately, a computing of vehicular cloud and fog cloud faced a set of challenges in security, authentication, privacy, confidentiality and detection of misbehaving vehicles. In addition to, there is a need to recognize false messages from received messages in VANETs during moving on the road. In this work, the security issues and challenges for computing in the vehicular cloud over for computing is studied.
In the Internet of Things (IoT), smart devices are connected using various communication protocols, such as Wi-Fi, ZigBee. Some IoT devices have multiple built-in communication modules. If an IoT device equipped with multiple communication protocols is compromised by an attacker using one communication protocol (e.g., Wi-Fi), it can be exploited as an entry point to the IoT network. Another protocol (e.g., ZigBee) of this IoT device could be used to exploit vulnerabilities of other IoT devices using the same communication protocol. In order to find potential attacks caused by this kind of cross-protocol devices, we group IoT devices based on their communication protocols and construct a graphical security model for each group of devices using the same communication protocol. We combine the security models via the cross-protocol devices and compute hidden attack paths traversing different groups of devices. We use two use cases in the smart home scenario to demonstrate our approach and discuss some feasible countermeasures.
Node compromising is still the most hard attack in Wireless Sensor Networks (WSNs). It affects key distribution which is a building block in securing communications in any network. The weak point of several roposed key distribution schemes in WSNs is their lack of resilience to node compromising attacks. When a node is compromised, all its key material is revealed leading to insecure communication links throughout the network. This drawback is more harmful for long-lived WSNs that are deployed in multiple phases, i.e., Multi-phase WSNs (MPWSNs). In the last few years, many key management schemes were proposed to ensure security in WSNs. However, these schemes are conceived for single phase WSNs and their security degrades with time when an attacker captures nodes. To deal with this drawback and enhance the resilience to node compromising over the whole lifetime of the network, we propose in this paper, a new key pre-distribution scheme adapted to MPWSNs. Our scheme takes advantage of the resilience improvement of Q-composite key scheme and adds self-healing which is the ability of the scheme to decrease the effect of node compromising over time. Self-healing is achieved by pre-distributing each generation with fresh keys. The evaluation of our scheme proves that it has a good key connectivity and a high resilience to node compromising attack compared to existing key management schemes.
Sharing and working on sensitive data in distributed settings from healthcare to finance is a major challenge due to security and privacy concerns. Secure multiparty computation (SMC) is a viable panacea for this, allowing distributed parties to make computations while the parties learn nothing about their data, but the final result. Although SMC is instrumental in such distributed settings, it does not provide any guarantees not to leak any information about individuals to adversaries. Differential privacy (DP) can be utilized to address this; however, achieving SMC with DP is not a trivial task, either. In this paper, we propose a novel Secure Multiparty Distributed Differentially Private (SM-DDP) protocol to achieve secure and private computations in a multiparty environment. Specifically, with our protocol, we simultaneously achieve SMC and DP in distributed settings focusing on linear regression on horizontally distributed data. That is, parties do not see each others’ data and further, can not infer information about individuals from the final constructed statistical model. Any statistical model function that allows independent calculation of local statistics can be computed through our protocol. The protocol implements homomorphic encryption for SMC and functional mechanism for DP to achieve the desired security and privacy guarantees. In this work, we first introduce the theoretical foundation for the SM-DDP protocol and then evaluate its efficacy and performance on two different datasets. Our results show that one can achieve individual-level privacy through the proposed protocol with distributed DP, which is independently applied by each party in a distributed fashion. Moreover, our results also show that the SM-DDP protocol incurs minimal computational overhead, is scalable, and provides security and privacy guarantees.
The rise of big data age in the Internet has led to the explosive growth of data size. However, trust issue has become the biggest problem of big data, leading to the difficulty in data safe circulation and industry development. The blockchain technology provides a new solution to this problem by combining non-tampering, traceable features with smart contracts that automatically execute default instructions. In this paper, we present a credible big data sharing model based on blockchain technology and smart contract to ensure the safe circulation of data resources.
NoSQL databases have become popular with enterprises due to their scalable and flexible storage management of big data. Nevertheless, their popularity also brings up security concerns. Most NoSQL databases lacked secure data encryption, relying on developers to implement cryptographic methods at application level or middleware layer as a wrapper around the database. While this approach protects the integrity of data, it increases the difficulty of executing queries. We were motivated to design a system that not only provides NoSQL databases with the necessary data security, but also supports the execution of query over encrypted data. Furthermore, how to exploit the distributed fashion of NoSQL databases to deliver high performance and scalability with massive client accesses is another important challenge. In this research, we introduce Crypt-NoSQL, the first prototype to support execution of query over encrypted data on NoSQL databases with high performance. Three different models of Crypt-NoSQL were proposed and performance was evaluated with Yahoo! Cloud Service Benchmark (YCSB) considering an enormous number of clients. Our experimental results show that Crypt-NoSQL can process queries over encrypted data with high performance and scalability. A guidance of establishing service level agreement (SLA) for Crypt-NoSQL as a cloud service is also proposed.
The SDN (Software Defined Networking) paradigm rings flexibility to the network management and is an enabler to offer huge opportunities for network programmability. And, to solve the scalability issue raised by the centralized architecture of SDN, multi-controllers deployment (or distributed controllers system) is envisioned. In this paper, we focus on increasing the diversity of SDN control plane so as to enhance the network security. Our goal is to limit the ability of a malicious controller to compromise its neighboring controllers, and by extension, the rest of the controllers. We investigate a heterogeneous Susceptible-Infectious-Susceptible (SIS) epidemic model to evaluate the security performance and propose a coloring algorithm to increase the diversity based on community detection. And the simulation results demonstrate that our algorithm can reduce infection rate in control plane and our work shows that diversity must be introduced in network design for network security.