Biblio
Vehicular ad-Hoc Networks (VANETs) have been promoted as a key technology that can provide a wide variety of services such as traffic management, passenger safety, as well as travel convenience and comfort. VANETs are now proposed to be part of the upcoming Fifth Generation (5G) technology, integrated with Software Defined Networking (SDN), as key enabler of 5G. The technology of fog computing in 5G turned out to be an adequate solution for faster processing in delay sensitive application, such as VANETs, being a hybrid solution between fully centralized and fully distributed networks. In this paper, we propose a three-way integration between VANETs, SDN, and 5G for a resilient VANET security design approach, which strikes a good balance between network, mobility, performance and security features. We show how such an approach can secure VANETs from different types of attacks such as Distributed Denial of Service (DDoS) targeting either the controllers or the vehicles in the network, and how to trace back the source of the attack. Our evaluation shows the capability of the proposed system to enforce different levels of real-time user-defined security, while maintaining low overhead and minimal configuration.
The inherent characteristics of Mobile Ad hoc network (MANET) such as dynamic topology, limited bandwidth, limited power supply, infrastructure less network make themselves attractive for a wide spectrum of applications and vulnerable to security attacks. Sinkhole attack is the most disruptive routing layer attack. Sinkhole nodes attract all the traffic towards them to setup further active attacks such as Black hole, Gray hole and wormhole attacks. Sinkhole nodes need to be isolated from the MANET as early as possible. In this paper, an effective mechanism is proposed to prevent and detect sinkhole and wormhole attacks in MANET. The proposed work detects and punishes the attacker nodes using different techniques such as node collusion technique, which classifies a node as an attacker node only with the agreement with the neighboring nodes. When the node suspects the existence of attacker or sinkhole node in the path, it joins together with neighboring nodes to determine the sinkhole node. In the prevention of routing attacks, the proposed system introduces a route reserve method; new routes learnt are updated in the routing table of the node only after ensuring that the route does not contain the attacker nodes. The proposed system effectively modifies Ad hoc on demand Distance Vector (AODV) with the ability to detect and prevent the sinkhole and wormhole attack, so the modified protocol is named as Attack Aware Alert (A3AODV). The experiments are carried out in NS2 simulator, and the result shows the efficiency in terms of packet delivery ratio and routing overhead.
Vehicular ad hoc network is based on MANET all the vehicle to vehicle and vehicle roadside are connected to the wireless sensor network. In this paper mainly discuss on the security in the VANET in the lightweight cloud environment. Moving vehicle on the roadside connected through the sensor nodes and to provide communication between the vehicles and directly connected to the centralized environment. We propose a new approach to share the information in the VANET networks in secure manner through cloud.
Cyber-physical systems connect the physical world and the information world by sensors and actuators. These sensors are usually small embedded systems which have many limitations on wireless communication, computing and storage. This paper proposes a lightweight coding method for secure and reliable transmission over a wireless communication links in cyber-physical systems. The reliability of transmission is provided by forward error correction. And to ensure the confidentiality, we utilize different encryption matrices at each time of coding which are generated by the sequence number of packets. So replay attacks and other cyber threats can be resisted simultaneously. The issues of the prior reliable transmission protocols and secure communication protocols in wireless networks of a cyber-physical system are reduced, such as large protocol overhead, high interaction delay and large computation cost.
The area of secure compilation aims to design compilers which produce hardened code that can withstand attacks from low-level co-linked components. So far, there is no formal correctness criterion for secure compilers that comes with a clear understanding of what security properties the criterion actually provides. Ideally, we would like a criterion that, if fulfilled by a compiler, guarantees that large classes of security properties of source language programs continue to hold in the compiled program, even as the compiled program is run against adversaries with low-level attack capabilities. This paper provides such a novel correctness criterion for secure compilers, called trace-preserving compilation (TPC). We show that TPC preserves a large class of security properties, namely all safety hyperproperties. Further, we show that TPC preserves more properties than full abstraction, the de-facto criterion used for secure compilation. Then, we show that several fully abstract compilers described in literature satisfy an additional, common property, which implies that they also satisfy TPC. As an illustration, we prove that a fully abstract compiler from a typed source language to an untyped target language satisfies TPC.
A majority of today's mobile apps integrate web content of various kinds. Unfortunately, the interactions between app code and web content expose new attack vectors: a malicious app can subvert its embedded web content to steal user secrets; on the other hand, malicious web content can use the privileges of its embedding app to exfiltrate sensitive information such as the user's location and contacts. In this paper, we discuss security weaknesses of the interface between app code and web content through attacks, then introduce defenses that can be deployed without modifying the OS. Our defenses feature WIREframe, a service that securely embeds and renders external web content in Android apps, and in turn, prevents attacks between em- bedded web and host apps. WIREframe fully mediates the interface between app code and embedded web content. Un- like the existing web-embedding mechanisms, WIREframe allows both apps and embedded web content to define simple access policies to protect their own resources. These policies recognize fine-grained security principals, such as origins, and control all interactions between apps and the web. We also introduce WIRE (Web Isolation Rewriting Engine), an offline app rewriting tool that allows app users to inject WIREframe protections into existing apps. Our evaluation, based on 7166 popular apps and 20 specially selected apps, shows these techniques work on complex apps and incur acceptable end-to-end performance overhead.
On account of large and inconsistent propagation delays during transmission in Underwater Wireless Sensor Networks (UWSNs), wormholes bring more destructive than many attacks to localization applications. As a localization algorithm, DV-hop is classic but without secure scheme. A secure localization algorithm for UWSNs- RDV-HOP is brought out, which is based on reputation values and the constraints of propagation distance in UWSNs. In RDV-HOP, the anchor nodes evaluate the reputation of paths to other anchor nodes and broadcast these reputation values to the network. Unknown nodes select credible anchors nodes with high reputation to locate. We analyze the influence of the location accuracy with some parameters in the simulation experiments. The results show that the proposed algorithm can reduce the location error under the wormhole attack.
Steganography is the science of hiding information to send secret messages using the carrier object known as stego object. Steganographic technology is based on three principles including security, robustness and capacity. In this paper, we present a digital image hidden by using the compressive sensing technology to increase security of stego image based on human visual system features. The results represent which our proposed method provides higher security in comparison with the other presented methods. Bit Correction Rate between original secret message and extracted message is used to show the accuracy of this method.
As the Internet of Things (IoT) continues to grow, there arises concerns and challenges with regard to the security and privacy of the IoT system. In this paper, we propose a FOg CompUting-based Security (FOCUS) system to address the security challenges in the IoT. The proposed FOCUS system leverages the virtual private network (VPN) to secure the access channel to the IoT devices. In addition, FOCUS adopts a challenge-response authentication to protect the VPN server against distributed denial of service (DDoS) attacks, which can further enhance the security of the IoT system. FOCUS is implemented in fog computing that is close to the end users, thus achieving a fast and efficient protection. We demonstrate FOCUS in a proof-of-concept prototype, and conduct experiments to evaluate its performance. The results show that FOCUS can effectively filter out malicious attacks with a very low response latency.
Imposing security in MANET is very challenging and hot topic of research science last two decades because of its wide applicability in applications like defense. Number of efforts has been made in this direction. But available security algorithms, methods, models and framework may not completely solve this problem. Motivated from various existing security methods and outlier detection, in this paper novel simple but efficient outlier detection scheme based security algorithm is proposed to protect the Ad hoc on demand distance vector (AODV) reactive routing protocol from Black hole attack in mobile ad hoc environment. Simulation results obtained from network simulator tool evident the simplicity, robustness and effectiveness of the proposed algorithm over the original AODV protocol and existing methods.
In this paper, we review big data characteristics and security challenges in the cloud and visit different cloud domains and security regulations. We propose using integrated auditing for secure data storage and transaction logs, real-time compliance and security monitoring, regulatory compliance, data environment, identity and access management, infrastructure auditing, availability, privacy, legality, cyber threats, and granular auditing to achieve big data security. We apply a stochastic process model to conduct security analyses in availability and mean time to security failure. Potential future works are also discussed.
Artificial software diversity is an effective way to prevent software vulnerabilities and errors to be exploited in code-reuse attacks. This is achieved by lowering the individual probability of a successful attack to a level that makes the attack unfeasible. Unfortunately, the existing approaches are not applicable to safety-critical real-time systems as they induce unacceptable performance overheads, they violate safety and timing guarantees, or they assume hardware resources which are typically not available in embedded systems. To overcome these problems, we propose a safe diversity approach that preserves the timing properties of real-time processes by controlling its impact on the worst case execution time (WCET). Our main idea is to use block-level diversity with a large, but fixed set of movable instruction sequences, and to use static WCET analysis to identify non-critical areas of code where it can safely be split into more movable instruction sequences.
During its nascent stages, Programmable Logic Controllers (PLC) were made robust to sustain tough industrial environments, but little care was taken to raise defenses against potential cyberthreats. The recent interconnectivity of legacy PLCs and SCADA systems with corporate networks and the internet has significantly increased the threats to critical infrastructure. To counter these threats, researchers have put their efforts in finding defense mechanisms that can protect the SCADA network and the PLCs. Encryption is a critical component of security and therefore has been used by many organizations to protect data on the network. However, since PLC vendors don't make available information about their hardware or software, it becomes challenging to embed encryption into their devices, especially if they rely on legacy protocols. This paper describes an alternative design using an open source PLC that was modified to encrypt all data it sends over the network, independently of the protocol used. Experimental results indicated that the encryption layer increased the security of the link without causing a significant overhead.
Supercomputers are widely applied in various domains, which have advantage of high processing capability and mass storage. With growing supercomputing users, the system security receives comprehensive attentions, and becomes more and more important. In this paper, according to the characteristics of supercomputing environment, we perform an in-depth analysis of existing security problems in the process of using resources. To solve these problems, we propose a security analysis method and a prototype system for supercomputing users' behavior. The basic idea is to restore the complete users' behavior paths and operation records based on the supercomputing business process and track the use of resources. Finally, the method is evaluated and the results show that the security analysis method of users' behavior can help administrators detect security incidents in time and respond quickly. The final purpose is to optimize and improve the security level of the whole system.
Wearable devices are being more popular in our daily life. Especially, smart wristbands are booming in the market recently, which can be used to monitor health status, track fitness data, or even do medical tests, etc. For this reason, smart wristbands can obtain a lot of personal data. Hence, users and manufacturers should pay more attention to the security aspects of smart wristbands. However, we have found that some Bluetooth Low Energy based smart wristbands have very weak or even no security protection mechanism, therefore, they are vulnerable to replay attacks, man-in-the-middle attacks, brute-force attacks, Denial of Service (DoS) attacks, etc. We have investigated four different popular smart wristbands and a smart watch. Among them, only the smart watch is protected by some security mechanisms while the other four smart wristbands are not protected. In our experiments, we have also figured out all the message formats of the controlling commands of these smart wristbands and developed an Android software application as a testing tool. Powered by the resolved command formats, this tool can directly control these wristbands, and any other wristbands of these four models, without using the official supporting applications.
There are billions of Internet of things (IoT) devices connecting to the Internet and the number is increasing. As a still ongoing technology, IoT can be used in different fields, such as agriculture, healthcare, manufacturing, energy, retailing and logistics. IoT has been changing our world and the way we live and think. However, IoT has no uniform architecture and there are different kinds of attacks on the different layers of IoT, such as unauthorized access to tags, tag cloning, sybil attack, sinkhole attack, denial of service attack, malicious code injection, and man in middle attack. IoT devices are more vulnerable to attacks because it is simple and some security measures can not be implemented. We analyze the privacy and security challenges in the IoT and survey on the corresponding solutions to enhance the security of IoT architecture and protocol. We should focus more on the security and privacy on IoT and help to promote the development of IoT.
The Information Centric Networking (ICN) is a novel concept of a large scale ecosystem of wireless actuators and computing technologies. ICN technologies are getting popular in the development of various applications to bring day-to-day comfort and ease in human life. The e-healthcare monitoring services is a subset of ICN services which has been utilized to monitor patient's health condition in a smart and ubiquitous way. However, there are several challenges and attacks on ICN. In this paper we have discussed ICN attacks and ICN based healthcare scenario. We have proposed a novel ICN stack for healthcare scenario for securing biomedical data communication instead of communication networks. However, the biomedical data communication between patient and Doctor requires reliable and secure networks for the global access.
Fog computing provides a new architecture for the implementation of the Internet of Things (IoT), which can connect sensor nodes to the cloud using the edge of the network. This structure has improved the latency and energy consumption in the cloud. In this heterogeneous and distributed environment, resource allocation is very important. Hence, scheduling will be a challenge to increase productivity and allocate resources appropriately to the tasks. Programs that run in this environment should be protected from intruders. We consider three parameters as authentication, integrity, and confidentiality to maintain security in fog devices. These parameters have time and computational overhead. In the proposed approach, we schedule the modules for the run in fog devices by heuristic algorithms based on data mining technique. The objective function is included CPU utilization, bandwidth, and security overhead. We compare the proposed algorithm with several heuristic algorithms. The results show that our proposed algorithm improved the average energy consumption of 63.27%, cost 44.71% relative to the PSO, ACO, SA algorithms.
Due to flexibility, low cost and rapid deployment, wireless sensor networks (WSNs)have been drawing more and more interest from governments, researchers, application developers, and manufacturers in recent years. Nowadays, we are in the age of industry 4.0, in which the traditional industrial control systems will be connected with each other and provide intelligent manufacturing. Therefore, WSNs can play an extremely crucial role to monitor the environment and condition parameters for smart factories. Nevertheless, the introduction of the WSNs reveals the weakness, especially for industrial applications. Through the vulnerability of IWSNs, the latent attackers were likely to invade the information system. Risk evaluation is an overwhelmingly efficient method to reduce the risk of information system in order to an acceptable level. This paper aim to study the security issues about IWSNs as well as put forward a practical solution to evaluate the risk of IWSNs, which can guide us to make risk evaluation process and improve the security of IWSNs through appropriate countermeasures.
This paper studies the stability of event-triggered control systems subject to Denial-of-Service attacks. An improved method is provided to increase frequency and duration of the DoS attacks where closed-loop stability is not destroyed. A two-mode switching control method is adopted to maintain stability of event-triggered control systems in the presence of attacks. Moreover, this paper reveals the relationship between robustness of systems against DoS attacks and lower bound of the inter-event times, namely, enlarging the inter-execution time contributes to enhancing the robustness of the systems against DoS attacks. Finally, some simulations are presented to illustrate the efficiency and feasibility of the obtained results.
In the multi-cloud tenancy environments, Web Service offers an standard approach for discovering and using capabilities in an environment that transcends ownership domains. This brings into concern the ownership and security related to Web Service governance. Our approach for this issue involves an ESB-integrated middleware for security criteria regulation on Clouds. It uses an attribute-based security policy model for the exhibition of assets consumers' security profiles and deducing service accessing decision. Assets represent computing power/functionality and information/data provided by entities. Experiments show the middleware to bring minor governance burdens on the hardware aspect, as well as better performance with colosum scaling property, dealing well with cumbersome policy files, which is probably the situation of complex composite service scenarios.
We consider the problem of designing repair efficient distributed storage systems, which are information-theoretically secure against a passive eavesdropper that can gain access to a limited number of storage nodes. We present a framework that enables design of a broad range of secure storage codes through a joint construction of inner and outer codes. As case studies, we focus on two specific families of storage codes: (i) minimum storage regenerating (MSR) codes, and (ii) maximally recoverable (MR) codes, which are a class of locally repairable codes (LRCs). The main idea of this framework is to utilize the existing constructions of storage codes to jointly design an outer coset code and inner storage code. Finally, we present a construction of an outer coset code over small field size to secure locally repairable codes presented by Tamo and Barg for the special case of an eavesdropper that can observe any subset of nodes of maximum possible size.
Distributed storage systems and caching systems are becoming widespread, and this motivates the increasing interest on assessing their achievable performance in terms of reliability for legitimate users and security against malicious users. While the assessment of reliability takes benefit of the availability of well established metrics and tools, assessing security is more challenging. The classical cryptographic approach aims at estimating the computational effort for an attacker to break the system, and ensuring that it is far above any feasible amount. This has the limitation of depending on attack algorithms and advances in computing power. The information-theoretic approach instead exploits capacity measures to achieve unconditional security against attackers, but often does not provide practical recipes to reach such a condition. We propose a mixed cryptographic/information-theoretic approach with a twofold goal: estimating the levels of information-theoretic security and defining a practical scheme able to achieve them. In order to find optimal choices of the parameters of the proposed scheme, we exploit an effective probabilistic model checker, which allows us to overcome several limitations of more conventional methods.
Cyber-attacks and intrusions in cyber-physical control systems are, currently, difficult to reliably prevent. Knowing a system's vulnerabilities and implementing static mitigations is not enough, since threats are advancing faster than the pace at which static cyber solutions can counteract. Accordingly, the practice of cybersecurity needs to ensure that intrusion and compromise do not result in system or environment damage or loss. In a previous paper [2], we described the Cyberspace Security Econometrics System (CSES), which is a stakeholder-aware and economics-based risk assessment method for cybersecurity. CSES allows an analyst to assess a system in terms of estimated loss resulting from security breakdowns. In this paper, we describe two new related contributions: 1) We map the Cyberspace Security Econometrics System (CSES) method to the evaluation and mitigation steps described by the NIST Guide to Industrial Control Systems (ICS) Security, Special Publication 800-82r2. Hence, presenting an economics-based and stakeholder-aware risk evaluation method for the implementation of the NIST-SP-800-82 guide; and 2) We describe the application of this tailored method through the use of a fictitious example of a critical infrastructure system of an electric and gas utility.
Today's major concern is not only maximizing the information rate through linear network coding scheme which is intelligent combination of information symbols at sending nodes but also secured transmission of information. Though cryptographic measure of security (computational security) gives secure transmission of information, it results system complexity and consequent reduction in efficiency of the communication system. This problem leads to alternative way of optimally secure and maximized information transmission. The alternative solution is secure network coding which is information theoretic approach. Depending up on applications, different security measures are needed during the transmission of information over wiretapped network with potential attack by the adversaries. In this research work, mathematical model for different security constraints with upper and lower boundaries were studied depending up on the randomness added to the source message and hence the security constraints on linear network code for randomized source messages depends both on randomness added and number of random source symbols. If the source generates large number random symbols, lesser number of random keys can give higher security to the information but information theoretic security bounds remain same. Hence maximizing randomness to the source is equivalent to adding security level.