Biblio

Filters: Keyword is denial-of-service  [Clear All Filters]
2021-02-22
Li, Y., Liu, Y., Wang, Y., Guo, Z., Yin, H., Teng, H..  2020.  Synergetic Denial-of-Service Attacks and Defense in Underwater Named Data Networking. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1569–1578.
Due to the harsh environment and energy limitation, maintaining efficient communication is crucial to the lifetime of Underwater Sensor Networks (UWSN). Named Data Networking (NDN), one of future network architectures, begins to be applied to UWSN. Although Underwater Named Data Networking (UNDN) performs well in data transmission, it still faces some security threats, such as the Denial-of-Service (DoS) attacks caused by Interest Flooding Attacks (IFAs). In this paper, we present a new type of DoS attacks, named as Synergetic Denial-of-Service (SDoS). Attackers synergize with each other, taking turns to reply to malicious interests as late as possible. SDoS attacks will damage the Pending Interest Table, Content Store, and Forwarding Information Base in routers with high concealment. Simulation results demonstrate that the SDoS attacks quadruple the increased network traffic compared with normal IFAs and the existing IFA detection algorithm in UNDN is completely invalid to SDoS attacks. In addition, we analyze the infection problem in UNDN and propose a defense method Trident based on carefully designed adaptive threshold, burst traffic detection, and attacker identification. Experiment results illustrate that Trident can effectively detect and resist both SDoS attacks and normal IFAs. Meanwhile, Trident can robustly undertake burst traffic and congestion.
2021-09-07
Jonker, Mattijs, Sperotto, Anna, Pras, Aiko.  2020.  DDoS Mitigation: A Measurement-Based Approach. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–6.
Society heavily relies upon the Internet for global communications. Simultaneously, Internet stability and reliability are continuously subject to deliberate threats. These threats include (Distributed) Denial-of-Service (DDoS) attacks, which can potentially be devastating. As a result of DDoS, businesses lose hundreds of millions of dollars annually. Moreover, when it comes to vital infrastructure, national safety and even lives could be at stake. Effective defenses are therefore an absolute necessity. Prospective users of readily available mitigation solutions find themselves having many shapes and sizes to choose from, the right fit of which may, however, not always be apparent. In addition, the deployment and operation of mitigation solutions may come with hidden hazards that need to be better understood. Policy makers and governments also find themselves facing questions concerning what needs to be done to promote cybersafety on a national level. Developing an optimal course of action to deal with DDoS, therefore, also brings about societal challenges. Even though the DDoS problem is by no means new, the scale of the problem is still unclear. We do not know exactly what it is we are defending against and getting a better understanding of attacks is essential to addressing the problem head-on. To advance situational awareness, many technical and societal challenges need still to be tackled. Given the central importance of better understanding the DDoS problem to improve overall Internet security, the thesis that we summarize in this paper has three main contributions. First, we rigorously characterize attacks and attacked targets at scale. Second, we advance knowledge about the Internet-wide adoption, deployment and operational use of various mitigation solutions. Finally, we investigate hidden hazards that can render mitigation solutions altogether ineffective.
2021-05-13
Luo, Yukui, Gongye, Cheng, Ren, Shaolei, Fei, Yunsi, Xu, Xiaolin.  2020.  Stealthy-Shutdown: Practical Remote Power Attacks in Multi - Tenant FPGAs. 2020 IEEE 38th International Conference on Computer Design (ICCD). :545–552.
With the deployment of artificial intelligent (AI) algorithms in a large variety of applications, there creates an increasing need for high-performance computing capabilities. As a result, different hardware platforms have been utilized for acceleration purposes. Among these hardware-based accelerators, the field-programmable gate arrays (FPGAs) have gained a lot of attention due to their re-programmable characteristics, which provide customized control logic and computing operators. For example, FPGAs have recently been adopted for on-demand cloud services by the leading cloud providers like Amazon and Microsoft, providing acceleration for various compute-intensive tasks. While the co-residency of multiple tenants on a cloud FPGA chip increases the efficiency of resource utilization, it also creates unique attack surfaces that are under-explored. In this paper, we exploit the vulnerability associated with the shared power distribution network on cloud FPGAs. We present a stealthy power attack that can be remotely launched by a malicious tenant, shutting down the entire chip and resulting in denial-of-service for other co-located benign tenants. Specifically, we propose stealthy-shutdown: a well-timed power attack that can be implemented in two steps: (1) an attacker monitors the realtime FPGA power-consumption detected by ring-oscillator-based voltage sensors, and (2) when capturing high power-consuming moments, i.e., the power consumption by other tenants is above a certain threshold, she/he injects a well-timed power load to shut down the FPGA system. Note that in the proposed attack strategy, the power load injected by the attacker only accounts for a small portion of the overall power consumption; therefore, such attack strategy remains stealthy to the cloud FPGA operator. We successfully implement and validate the proposed attack on three FPGA evaluation kits with running real-world applications. The proposed attack results in a stealthy-shutdown, demonstrating severe security concerns of co-tenancy on cloud FPGAs. We also offer two countermeasures that can mitigate such power attacks.
2020-01-27
Qureshi, Ayyaz-Ul-Haq, Larijani, Hadi, Javed, Abbas, Mtetwa, Nhamoinesu, Ahmad, Jawad.  2019.  Intrusion Detection Using Swarm Intelligence. 2019 UK/ China Emerging Technologies (UCET). :1–5.
Recent advances in networking and communication technologies have enabled Internet-of-Things (IoT) devices to communicate more frequently and faster. An IoT device typically transmits data over the Internet which is an insecure channel. Cyber attacks such as denial-of-service (DoS), man-in-middle, and SQL injection are considered as big threats to IoT devices. In this paper, an anomaly-based intrusion detection scheme is proposed that can protect sensitive information and detect novel cyber-attacks. The Artificial Bee Colony (ABC) algorithm is used to train the Random Neural Network (RNN) based system (RNN-ABC). The proposed scheme is trained on NSL-KDD Train+ and tested for unseen data. The experimental results suggest that swarm intelligence and RNN successfully classify novel attacks with an accuracy of 91.65%. Additionally, the performance of the proposed scheme is also compared with a hybrid multilayer perceptron (MLP) based intrusion detection system using sensitivity, mean of mean squared error (MMSE), the standard deviation of MSE (SDMSE), best mean squared error (BMSE) and worst mean squared error (WMSE) parameters. All experimental tests confirm the robustness and high accuracy of the proposed scheme.
2020-03-23
Daoud, Luka, Rafla, Nader.  2019.  Analysis of Black Hole Router Attack in Network-on-Chip. 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS). :69–72.

Network-on-Chip (NoC) is the communication platform of the data among the processing cores in Multiprocessors System-on-Chip (MPSoC). NoC has become a target to security attacks and by outsourcing design, it can be infected with a malicious Hardware Trojan (HT) to degrades the system performance or leaves a back door for sensitive information leaking. In this paper, we proposed a HT model that applies a denial of service attack by deliberately discarding the data packets that are passing through the infected node creating a black hole in the NoC. It is known as Black Hole Router (BHR) attack. We studied the effect of the BHR attack on the NoC. The power and area overhead of the BHR are analyzed. We studied the effect of the locations of BHRs and their distribution in the network as well. The malicious nodes has very small area and power overhead, 1.98% and 0.74% respectively, with a very strong violent attack.

2020-05-08
Boakye-Boateng, Kwasi, Lashkari, Arash Habibi.  2019.  Securing GOOSE: The Return of One-Time Pads. 2019 International Carnahan Conference on Security Technology (ICCST). :1—8.

IEC 61850 is an international standard that is widely used in substation automation systems (SAS) in smart grids. During its development, security was not considered thus leaving SAS vulnerable to attacks from adversaries. IEC 62351 was developed to provide security recommendations for SAS against (distributed) denial-of-service, replay, alteration, spoofing and detection of devices attacks. However, real-time communications, which require protocols such as Generic Object-Oriented Substation Event (GOOSE) to function efficiently, cannot implement these recommendations due to latency constraints. There has been researching that sought to improve the security of GOOSE messages, however, some cannot be practically implemented due to hardware requirements while others are theoretical, even though latency requirements were met. This research investigates the possibility of encrypting GOOSE messages with One- Time Pads (OTP), leveraging the fact that encryption/decryption processes require the random generation of OTPs and modulo addition (XOR), which could be a realistic approach to secure GOOSE while maintaining latency requirements. Results show that GOOSE messages can be encrypted with some future work required.

2020-07-06
Xiong, Leilei, Grijalva, Santiago.  2019.  N-1 RTU Cyber-Physical Security Assessment Using State Estimation. 2019 IEEE Power Energy Society General Meeting (PESGM). :1–5.
Real-time supervisory control and data acquisition (SCADA) systems use remote terminal units (RTUs) to monitor and manage the flow of power at electrical substations. As their connectivity to different utility and private networks increases, RTUs are becoming more vulnerable to cyber-attacks. Some attacks seek to access RTUs to directly control power system devices with the intent to shed load or cause equipment damage. Other attacks (such as denial-of-service) target network availability and seek to block, delay, or corrupt communications between the RTU and the control center. In the most severe case, when communications are entirely blocked, the loss of an RTU can cause the power system to become unobservable. It is important to understand how losing an RTU impacts the system state (bus voltage magnitudes and angles). The system state is determined by the state estimator and serves as the input to other critical EMS applications. There is currently no systematic approach for assessing the cyber-physical impact of losing RTUs. This paper proposes a methodology for N-1 RTU cyber-physical security assessment that could benefit power system control and operation. We demonstrate our approach on the IEEE 14-bus system as well as on a synthetic 200-bus system.
2020-12-17
Abeykoon, I., Feng, X..  2019.  Challenges in ROS Forensics. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1677—1682.

The usage of robot is rapidly growth in our society. The communication link and applications connect the robots to their clients or users. This communication link and applications are normally connected through some kind of network connections. This network system is amenable of being attached and vulnerable to the security threats. It is a critical part for ensuring security and privacy for robotic platforms. The paper, also discusses about several cyber-physical security threats that are only for robotic platforms. The peer to peer applications use in the robotic platforms for threats target integrity, availability and confidential security purposes. A Remote Administration Tool (RAT) was introduced for specific security attacks. An impact oriented process was performed for analyzing the assessment outcomes of the attacks. Tests and experiments of attacks were performed in simulation environment which was based on Gazbo Turtlebot simulator and physically on the robot. A software tool was used for simulating, debugging and experimenting on ROS platform. Integrity attacks performed for modifying commands and manipulated the robot behavior. Availability attacks were affected for Denial-of-Service (DoS) and the robot was not listened to Turtlebot commands. Integrity and availability attacks resulted sensitive information on the robot.

2019-10-30
Demoulin, Henri Maxime, Vaidya, Tavish, Pedisich, Isaac, DiMaiolo, Bob, Qian, Jingyu, Shah, Chirag, Zhang, Yuankai, Chen, Ang, Haeberlen, Andreas, Loo, Boon Thau et al..  2018.  DeDoS: Defusing DoS with Dispersion Oriented Software. Proceedings of the 34th Annual Computer Security Applications Conference. :712-722.

This paper presents DeDoS, a novel platform for mitigating asymmetric DoS attacks. These attacks are particularly challenging since even attackers with limited resources can exhaust the resources of well-provisioned servers. DeDoS offers a framework to deploy code in a highly modular fashion. If part of the application stack is experiencing a DoS attack, DeDoS can massively replicate only the affected component, potentially across many machines. This allows scaling of the impacted resource separately from the rest of the application stack, so that resources can be precisely added where needed to combat the attack. Our evaluation results show that DeDoS incurs reasonable overheads in normal operations, and that it significantly outperforms standard replication techniques when defending against a range of asymmetric attacks.

2018-09-28
Xue, Haoyue, Li, Yuhong, Rahmani, Rahim, Kanter, Theo, Que, Xirong.  2017.  A Mechanism for Mitigating DoS Attack in ICN-based Internet of Things. Proceedings of the 1st International Conference on Internet of Things and Machine Learning. :26:1–26:10.
Information-Centric Networking (ICN) 1 is a significant networking paradigm for the Internet of Things, which is an information-centric network in essence. The ICN paradigm owns inherently some security features, but also brings several new vulnerabilities. The most significant one among them is Interest flooding, which is a new type of Denial of Service (DoS) attack, and has even more serious effects to the whole network in the ICN paradigm than in the traditional IP paradigm. In this paper, we suggest a new mechanism to mitigate Interest flooding attack. The detection of Interest flooding and the corresponding mitigation measures are implemented on the edge routers, which are directly connected with the attackers. By using statistics of Interest satisfaction rate on the incoming interface of some edge routers, malicious name-prefixes or interfaces can be discovered, and then dropped or slowed down accordingly. With the help of the network information, the detected malicious name-prefixes and interfaces can also be distributed to the whole network quickly, and the attack can be mitigated quickly. The simulation results show that the suggested mechanism can reduce the influence of the Interest flooding quickly, and the network performance can recover automatically to the normal state without hurting the legitimate users.
2018-08-23
Blenn, Norbert, Ghiëtte, Vincent, Doerr, Christian.  2017.  Quantifying the Spectrum of Denial-of-Service Attacks Through Internet Backscatter. Proceedings of the 12th International Conference on Availability, Reliability and Security. :21:1–21:10.
Denial of Service (DoS) attacks are a major threat currently observable in computer networks and especially the Internet. In such an attack a malicious party tries to either break a service, running on a server, or exhaust the capacity or bandwidth of the victim to hinder customers to effectively use the service. Recent reports show that the total number of Distributed Denial of Service (DDoS) attacks is steadily growing with "mega-attacks" peaking at hundreds of gigabit/s (Gbps). In this paper, we will provide a quantification of DDoS attacks in size and duration beyond these outliers reported in the media. We find that these mega attacks do exist, but the bulk of attacks is in practice only a fraction of these frequently reported values. We further show that it is feasible to collect meaningful backscatter traces using surprisingly small telescopes, thereby enabling a broader audience to perform attack intelligence research.
2018-03-19
Ge, H., Yue, D., p Xie, X., Deng, S., Zhang, Y..  2017.  Analysis of Cyber Physical Systems Security via Networked Attacks. 2017 36th Chinese Control Conference (CCC). :4266–4272.

In this paper, cyber physical system is analyzed from security perspective. A double closed-loop security control structure and algorithm with defense functions is proposed. From this structure, the features of several cyber attacks are considered respectively. By this structure, the models of information disclosure, denial-of-service (DoS) and Man-in-the-Middle Attack (MITM) are proposed. According to each kind attack, different models are obtained and analyzed, then reduce to the unified models. Based on this, system security conditions are obtained, and a defense scenario with detail algorithm is design to illustrate the implementation of this program.

2018-02-06
Lin, P. C., Li, P. C., Nguyen, V. L..  2017.  Inferring OpenFlow Rules by Active Probing in Software-Defined Networks. 2017 19th International Conference on Advanced Communication Technology (ICACT). :415–420.

Software-defined networking (SDN) separates the control plane from underlying devices, and allows it to control the data plane from a global view. While SDN brings conveniences to management, it also introduces new security threats. Knowing reactive rules, attackers can launch denial-of-service (DoS) attacks by sending numerous rule-matched packets which trigger packet-in packets to overburden the controller. In this work, we present a novel method ``INferring SDN by Probing and Rule Extraction'' (INSPIRE) to discover the flow rules in SDN from probing packets. We evaluate the delay time from probing packets, classify them into defined classes, and infer the rules. This method involves three relevant steps: probing, clustering and rule inference. First, forged packets with various header fields are sent to measure processing and propagation time in the path. Second, it classifies the packets into multiple classes by using k-means clustering based on packet delay time. Finally, the apriori algorithm will find common header fields in the classes to infer the rules. We show how INSPIRE is able to infer flow rules via simulation, and the accuracy of inference can be up to 98.41% with very low false-positive rates.

2018-01-16
Rengaraju, P., Ramanan, V. R., Lung, C. H..  2017.  Detection and prevention of DoS attacks in Software-Defined Cloud networks. 2017 IEEE Conference on Dependable and Secure Computing. :217–223.

One of the recent focuses in Cloud Computing networks is Software Defined Clouds (SDC), where the Software-Defined Networking (SDN) technology is combined with the traditional Cloud network. SDC is aimed to create an effective Cloud environment by extending the virtualization concept to all resources. In that, the control plane is decoupled from the data plane in a network device and controlled by the centralized controller using the OpenFlow Protocol (OFP). As the centralized controller performs all control functions in a network, it requires strong security. Already, Cloud Computing faces many security challenges. Most vulnerable attacks in SDC is Denial-of-Service (DoS) and Distributed DoS (DDoS) attacks. To overcome the DoS attacks, we propose a distributed Firewall with Intrusion Prevention System (IPS) for SDC. The proposed distributed security mechanism is investigated for two DoS attacks, ICMP and SYN flooding attacks for different network scenarios. From the simulation results and discussion, we showed that the distributed Firewall with IPS security detects and prevents the DoS attack effectively.

2017-04-03
Li, Jingrui, Wolf, Tilman.  2016.  A One-Way Proof-of-Work Protocol to Protect Controllers in Software-Defined Networks. Proceedings of the 2016 Symposium on Architectures for Networking and Communications Systems. :123–124.

Connection setup in software-defined networks (SDN) requires considerable amounts of processing, communication, and memory resources. Attackers can target SDN controllers with simple attacks to cause denial of service. We proposed a defense mechanism based on a proof-of-work protocol. The key characteristics of this protocol, namely its one-way operation, its requirement for freshness in proofs of work, its adjustable difficulty, its ability to work with multiple network providers, and its use of existing TCP/IP header fields, ensure that this approach can be used in practice.

2014-09-17
Schmerl, Bradley, Cámara, Javier, Gennari, Jeffrey, Garlan, David, Casanova, Paulo, Moreno, Gabriel A., Glazier, Thomas J., Barnes, Jeffrey M..  2014.  Architecture-based Self-protection: Composing and Reasoning About Denial-of-service Mitigations. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :2:1–2:12.

Security features are often hardwired into software applications, making it difficult to adapt security responses to reflect changes in runtime context and new attacks. In prior work, we proposed the idea of architecture-based self-protection as a way of separating adaptation logic from application logic and providing a global perspective for reasoning about security adaptations in the context of other business goals. In this paper, we present an approach, based on this idea, for combating denial-of-service (DoS) attacks. Our approach allows DoS-related tactics to be composed into more sophisticated mitigation strategies that encapsulate possible responses to a security problem. Then, utility-based reasoning can be used to consider different business contexts and qualities. We describe how this approach forms the underpinnings of a scientific approach to self-protection, allowing us to reason about how to make the best choice of mitigation at runtime. Moreover, we also show how formal analysis can be used to determine whether the mitigations cover the range of conditions the system is likely to encounter, and the effect of mitigations on other quality attributes of the system. We evaluate the approach using the Rainbow self-adaptive framework and show how Rainbow chooses DoS mitigation tactics that are sensitive to different business contexts.

2016-12-05
Bradley Schmerl, Javier Camara, Jeffrey Gennari, David Garlan, Paulo Casanova, Gabriel Moreno, Thomas Glazier, Jeffrey Barnes.  2014.  Architecture-Based Self-Protection: Composing and Reasoning about Denial-of-Service Mitigations. HotSoS '14 Proceedings of the 2014 Symposium and Bootcamp on the Science of Security.

Security features are often hardwired into software applications, making it difficult to adapt security responses to reflect changes in runtime context and new attacks. In prior work, we proposed the idea of architecture-based self-protection as a way of separating adaptation logic from application logic and providing a global perspective for reasoning about security adaptations in the context of other business goals. In this paper, we present an approach, based on this idea, for combating denial-of-service (DoS) attacks. Our approach allows DoS-related tactics to be composed into more sophisticated mitigation strategies that encapsulate possible responses to a security problem. Then, utility-based reasoning can be used to consider different business contexts and qualities. We describe how this approach forms the underpinnings of a scientific approach to self-protection, allowing us to reason about how to make the best choice of mitigation at runtime. Moreover, we also show how formal analysis can be used to determine whether the mitigations cover the range of conditions the system is likely to encounter, and the effect of mitigations on other quality attributes of the system. We evaluate the approach using the Rainbow self-adaptive framework and show how Rainbow chooses DoS mitigation tactics that are sensitive to different business contexts.