Biblio

Found 2393 results

Filters: Keyword is human factors  [Clear All Filters]
2017-12-20
Alheeti, K. M. A., McDonald-Maier, K..  2017.  An intelligent security system for autonomous cars based on infrared sensors. 2017 23rd International Conference on Automation and Computing (ICAC). :1–5.
Safety and non-safety applications in the external communication systems of self-driving vehicles require authentication of control data, cooperative awareness messages and notification messages. Traditional security systems can prevent attackers from hacking or breaking important system functionality in autonomous vehicles. This paper presents a novel security system designed to protect vehicular ad hoc networks in self-driving and semi-autonomous vehicles that is based on Integrated Circuit Metric technology (ICMetrics). ICMetrics has the ability to secure communication systems in autonomous vehicles using features of the autonomous vehicle system itself. This security system is based on unique extracted features from vehicles behaviour and its sensors. Specifically, features have been extracted from bias values of infrared sensors which are used alongside semantically extracted information from a trace file of a simulated vehicular ad hoc network. The practical experimental implementation and evaluation of this system demonstrates the efficiency in identifying of abnormal/malicious behaviour typical for an attack.
2018-02-15
Hibshi, H., Breaux, T. D..  2017.  Reinforcing Security Requirements with Multifactor Quality Measurement. 2017 IEEE 25th International Requirements Engineering Conference (RE). :144–153.

Choosing how to write natural language scenarios is challenging, because stakeholders may over-generalize their descriptions or overlook or be unaware of alternate scenarios. In security, for example, this can result in weak security constraints that are too general, or missing constraints. Another challenge is that analysts are unclear on where to stop generating new scenarios. In this paper, we introduce the Multifactor Quality Method (MQM) to help requirements analysts to empirically collect system constraints in scenarios based on elicited expert preferences. The method combines quantitative statistical analysis to measure system quality with qualitative coding to extract new requirements. The method is bootstrapped with minimal analyst expertise in the domain affected by the quality area, and then guides an analyst toward selecting expert-recommended requirements to monotonically increase system quality. We report the results of applying the method to security. This include 550 requirements elicited from 69 security experts during a bootstrapping stage, and subsequent evaluation of these results in a verification stage with 45 security experts to measure the overall improvement of the new requirements. Security experts in our studies have an average of 10 years of experience. Our results show that using our method, we detect an increase in the security quality ratings collected in the verification stage. Finally, we discuss how our proposed method helps to improve security requirements elicitation, analysis, and measurement.

2017-12-12
Suh, Y. K., Ma, J..  2017.  SuperMan: A Novel System for Storing and Retrieving Scientific-Simulation Provenance for Efficient Job Executions on Computing Clusters. 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). :283–288.

Compute-intensive simulations typically charge substantial workloads on an online simulation platform backed by limited computing clusters and storage resources. Some (or most) of the simulations initiated by users may accompany input parameters/files that have been already provided by other (or same) users in the past. Unfortunately, these duplicate simulations may aggravate the performance of the platform by drastic consumption of the limited resources shared by a number of users on the platform. To minimize or avoid conducting repeated simulations, we present a novel system, called SUPERMAN (SimUlation ProvEnance Recycling MANager) that can record simulation provenances and recycle the results of past simulations. This system presents a great opportunity to not only reutilize existing results but also perform various analytics helpful for those who are not familiar with the platform. The system also offers interoperability across other systems by collecting the provenances in a standardized format. In our simulated experiments we found that over half of past computing jobs could be answered without actual executions by our system.

Hänel, T., Bothe, A., Helmke, R., Gericke, C., Aschenbruck, N..  2017.  Adjustable security for RFID-equipped IoT devices. 2017 IEEE International Conference on RFID Technology Application (RFID-TA). :208–213.

Over the last years, the number of rather simple interconnected devices in nonindustrial scenarios (e.g., for home automation) has steadily increased. For ease of use, the overall system security is often neglected. Before the Internet of Things (IoT) reaches the same distribution rate and impact in industrial applications, where security is crucial for success, solutions that combine usability, scalability, and security are required. We develop such a security system, mainly targeting sensor modules equipped with Radio Frequency IDentification (RFID) tags which we leverage to increase the security level. More specifically, we consider a network based on Message Queue Telemetry Transport (MQTT) which is a widely adopted protocol for the IoT.

2018-02-21
Demirol, D., Das, R., Tuna, G..  2017.  An android application to secure text messages. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP). :1–6.

For mobile phone users, short message service (SMS) is the most commonly used text-based communication type on mobile devices. Users can interact with other users and services via SMS. For example, users can send private messages, use information services, apply for a job advertisement, conduct bank transactions, and so on. Users should be very careful when using SMS. During the sending of SMS, the message content should be aware that it can be captured and act accordingly. Based on these findings, the elderly, called as “Silent Generation” which represents 70 years or older adults, are text messaging much more than they did in the past. Therefore, they need solutions which are both simple and secure enough if there is a need to send sensitive information via SMS. In this study, we propose and develop an android application to secure text messages. The application has a simple and easy-to-use graphical user interface but provides significant security.

2018-02-27
Ramadan, Q., Salnitriy, M., Strüber, D., Jürjens, J., Giorgini, P..  2017.  From Secure Business Process Modeling to Design-Level Security Verification. 2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages and Systems (MODELS). :123–133.

Tracing and integrating security requirements throughout the development process is a key challenge in security engineering. In socio-technical systems, security requirements for the organizational and technical aspects of a system are currently dealt with separately, giving rise to substantial misconceptions and errors. In this paper, we present a model-based security engineering framework for supporting the system design on the organizational and technical level. The key idea is to allow the involved experts to specify security requirements in the languages they are familiar with: business analysts use BPMN for procedural system descriptions; system developers use UML to design and implement the system architecture. Security requirements are captured via the language extensions SecBPMN2 and UMLsec. We provide a model transformation to bridge the conceptual gap between SecBPMN2 and UMLsec. Using UMLsec policies, various security properties of the resulting architecture can be verified. In a case study featuring an air traffic management system, we show how our framework can be practically applied.

2017-12-20
Xiaohao, S., Baolong, L..  2017.  An Investigation on Tree-Based Tags Anti-collision Algorithms in RFID. 2017 International Conference on Computer Network, Electronic and Automation (ICCNEA). :5–11.

The tree-based tags anti-collision algorithm is an important method in the anti-collision algorithms. In this paper, several typical tree algorithms are evaluated. The comparison of algorithms is summarized including time complexity, communication complexity and recognition, and the characteristics and disadvantages of each algorithm are pointed out. Finally, the improvement strategies of tree anti-collision algorithm are proposed, and the future research directions are also prospected.

2018-11-19
Pomsathit, A..  2017.  Performance Analysis of IDS with Honey Pot on New Media Broadcasting. 2017 International Conference on Circuits, Devices and Systems (ICCDS). :201–204.

This research was an experimental analysis of the Intrusion Detection Systems(IDS) with Honey Pot conducting through a study of using Honey Pot in tricking, delaying or deviating the intruder to attack new media broadcasting server for IPTV system. Denial of Service(DoS) over wire network and wireless network consisted of three types of attacks: TCP Flood, UDP Flood and ICMP Flood by Honey Pot, where the Honeyd would be used. In this simulation, a computer or a server in the network map needed to be secured by the inactivity firewalls or other security tools for the intrusion of the detection systems and Honey Pot. The network intrusion detection system used in this experiment was SNORT (www.snort.org) developed in the form of the Open Source operating system-Linux. The results showed that, from every experiment, the internal attacks had shown more threat than the external attacks. In addition, attacks occurred through LAN network posted 50% more disturb than attacks occurred on WIFI. Also, the external attacks through LAN posted 95% more attacks than through WIFI. However, the number of attacks presented by TCP, UDP and ICMP were insignificant. This result has supported the assumption that Honey Pot was able to help detecting the intrusion. In average, 16% of the attacks was detected by Honey Pot in every experiment.

2017-12-20
Amendola, S., Occhiuzzi, C., Marrocco, G..  2017.  RFID sensing networks for critical infrastructure security: A real testbed in an energy smart grid. 2017 IEEE International Conference on RFID Technology Application (RFID-TA). :106–110.

The UHF Radiofrequency Identification technology offers nowadays a viable technological solution for the implementation of low-level environmental monitoring of connected critical infrastructures to be protected from both physical threats and cyber attacks. An RFID sensor network was developed within the H2020 SCISSOR project, by addressing the design of both hardware components, that is a new family of multi-purpose wireless boards, and of control software handling the network topology. The hierarchical system is able to the detect complex, potentially dangerous, events such as the un-authorized access to a restricted area, anomalies of the electrical equipments, or the unusual variation of environmental parameters. The first real-world test-bed has been deployed inside an operational smart-grid on the Favignana Island. Currently, the network is fully working and remotely accessible.

2018-02-02
Akram, R. N., Markantonakis, K., Mayes, K., Habachi, O., Sauveron, D., Steyven, A., Chaumette, S..  2017.  Security, privacy and safety evaluation of dynamic and static fleets of drones. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). :1–12.

Interconnected everyday objects, either via public or private networks, are gradually becoming reality in modern life - often referred to as the Internet of Things (IoT) or Cyber-Physical Systems (CPS). One stand-out example are those systems based on Unmanned Aerial Vehicles (UAVs). Fleets of such vehicles (drones) are prophesied to assume multiple roles from mundane to high-sensitive applications, such as prompt pizza or shopping deliveries to the home, or to deployment on battlefields for battlefield and combat missions. Drones, which we refer to as UAVs in this paper, can operate either individually (solo missions) or as part of a fleet (group missions), with and without constant connection with a base station. The base station acts as the command centre to manage the drones' activities; however, an independent, localised and effective fleet control is necessary, potentially based on swarm intelligence, for several reasons: 1) an increase in the number of drone fleets; 2) fleet size might reach tens of UAVs; 3) making time-critical decisions by such fleets in the wild; 4) potential communication congestion and latency; and 5) in some cases, working in challenging terrains that hinders or mandates limited communication with a control centre, e.g. operations spanning long period of times or military usage of fleets in enemy territory. This self-aware, mission-focused and independent fleet of drones may utilise swarm intelligence for a), air-traffic or flight control management, b) obstacle avoidance, c) self-preservation (while maintaining the mission criteria), d) autonomous collaboration with other fleets in the wild, and e) assuring the security, privacy and safety of physical (drones itself) and virtual (data, software) assets. In this paper, we investigate the challenges faced by fleet of drones and propose a potential course of action on how to overcome them.

2018-02-21
Hu, Yao, Hara, Hiroaki, Fujiwara, Ikki, Matsutani, Hiroki, Amano, Hideharu, Koibuchi, Michihiro.  2017.  Towards Tightly-coupled Datacenter with Free-space Optical Links. Proceedings of the 2017 International Conference on Cloud and Big Data Computing. :33–39.

Clean slate design of computing system is an emerging topic for continuing growth of warehouse-scale computers. A famous custom design is rackscale (RS) computing by considering a single rack as a computer that consists of a number of processors, storages and accelerators customized to a target application. In RS, each user is expected to occupy a single or more than one rack. However, new users frequently appear and the users often change their application scales and parameters that would require different numbers of processors, storages and accelerators in a rack. The reconfiguration of interconnection networks on their components is potentially needed to support the above demand in RS. In this context, we propose the inter-rackscale (IRS) architecture that disaggregates various hardware resources into different racks according to their own areas. The heart of IRS is to use free-space optics (FSO) for tightly-coupled connections between processors, storages and GPUs distributed in different racks, by swapping endpoints of FSO links to change network topologies. Through a large IRS system simulation, we show that by utilizing FSO links for interconnection between racks, the FSO-equipped IRS architecture can provide comparable communication latency between heterogeneous resources to that of the counterpart RS architecture. A utilization of 3 FSO terminals per rack can improve at least 87.34% of inter-CPU/SSD(GPU) communication over Fat-tree and improve at least 92.18% of that over 2-D Torus. We verify the advantages of IRS over RS in job scheduling performance.

2017-10-18
Uemura, Toshiaki, Kashiwabara, Yuta, Kawanuma, Daiki, Tomii, Takashi.  2016.  Accuracy Evaluation by GPS Data Correction for the EV Energy Consumption Database. Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services. :213–218.
Electric vehicles (EVs) are expected to be applicable to smart grids because they have large-capacity batteries. It is important that smart grid users be able to estimate surplus battery energy and/or surplus capacity in advance of deploying EVs. We constructed a database, the Energy COnsumption LOG (ECOLOG) Database System, to store vehicle daily logs acquired by smartphones placed in vehicles. The electrical energy consumption is estimated from GPS coordinate data using an EV energy-consumption model. This research specifically examines commuting with a vehicle used for same route every day. We corrected GPS coordinate data by map matching, and input the data to the EV energy consumption model. We regard the remaining battery capacity data acquired by the EV CAN as correct data. Then we evaluate the accuracy of driving energy consumption logs as estimated using the corrected GPS coordinate data.
Ollesch, Julius.  2016.  Adaptive Steering of Cyber-physical Systems with Atomic Complex Event Processing Services: Doctoral Symposium. Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems. :402–405.
Given the advent of cyber-physical systems (CPS), event-based control paradigms such as complex event processing (CEP) are vital enablers for adaptive analytical control mechanisms. CPS are becoming a high-profile research topic as they are key to disruptive digital innovations such as autonomous driving, industrial internet, smart grid and ambient assisted living. However, organizational and technological scalability of today's CEP approaches is limited by their monolithic architectures. This leads to the research idea for atomic CEP entities and the hypothesis that a network of small event-based control services is better suited for CPS development and operation than current centralised approaches. In addition, the paper summarizes preliminary results of the presented doctoral work and outlines questions for future research as well as an evaluation plan.
2017-10-19
Grushka - Cohen, Hagit, Sofer, Oded, Biller, Ofer, Shapira, Bracha, Rokach, Lior.  2016.  CyberRank: Knowledge Elicitation for Risk Assessment of Database Security. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :2009–2012.
Security systems for databases produce numerous alerts about anomalous activities and policy rule violations. Prioritizing these alerts will help security personnel focus their efforts on the most urgent alerts. Currently, this is done manually by security experts that rank the alerts or define static risk scoring rules. Existing solutions are expensive, consume valuable expert time, and do not dynamically adapt to changes in policy. Adopting a learning approach for ranking alerts is complex due to the efforts required by security experts to initially train such a model. The more features used, the more accurate the model is likely to be, but this will require the collection of a greater amount of user feedback and prolong the calibration process. In this paper, we propose CyberRank, a novel algorithm for automatic preference elicitation that is effective for situations with limited experts' time and outperforms other algorithms for initial training of the system. We generate synthetic examples and annotate them using a model produced by Analytic Hierarchical Processing (AHP) to bootstrap a preference learning algorithm. We evaluate different approaches with a new dataset of expert ranked pairs of database transactions, in terms of their risk to the organization. We evaluated using manual risk assessments of transaction pairs, CyberRank outperforms all other methods for cold start scenario with error reduction of 20%.
2017-10-18
Ahmad, Abdul Mutaal, Lukowicz, Paul, Cheng, Jingyuan.  2016.  FPGA Based Hardware Acceleration of Sensor Matrix. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. :793–802.
This paper describes the hardware acceleration of various feature calculation functions used in activity recognition. In this work we have used a large scale sensing matrix which recognizes and counts gym exercises. Human activity is played on pressure matrix and the sensor data is sent to computer using a wired protocol for further processing. The recorded data from matrix is huge making it impractical to process on a smart phone. We propose a FPGA (Field Programmable Gate Array) based processing methodology which not only accelerates sensing data processing but also reduces the size of 2D sensor data matrix to 10 features. The resultant feature set can be transferred using wireless medium to a smart phone or other processing unit where the classification can be done. Our system takes a matrix of arbitrary size and output a 'features' set for each matrix frame. We used HLS (High Level Synthesis), an approach to write algorithm for FPGA using SystemC/C/C++ instead of traditional VHDL/Verilog. Results show promising improvement in processing time as compared to Matlab. Since the size of data is reduced, wireless medium can be use to transmit data. Additionally, the development time for FPGA designs is greatly reduced due to the usage of an abstracted high level synthesis approach. This system is currently developed for pressure sensing system but this strategy can be applied to other sensing application like temperature sensor grid.
2017-10-19
Knote, Robin, Baraki, Harun, Söllner, Matthias, Geihs, Kurt, Leimeister, Jan Marco.  2016.  From Requirement to Design Patterns for Ubiquitous Computing Applications. Proceedings of the 21st European Conference on Pattern Languages of Programs. :26:1–26:11.
Ubiquitous Computing describes a concept where computing appears around us at any time and any location. Respective systems rely on context-sensitivity and adaptability. This means that they constantly collect data of the user and his context to adapt its functionalities to certain situations. Hence, the development of Ubiquitous Computing systems is not only a technical issue and must be considered from a privacy, legal and usability perspective, too. This indicates a need for several experts from different disciplines to participate in the development process, mentioning requirements and evaluating design alternatives. In order to capture the knowledge of these interdisciplinary teams to make it reusable for similar problems, a pattern logic can be applied. In the early phase of a development project, requirement patterns are used to describe recurring requirements for similar problems, whereas in a more advanced development phase, design patterns are deployed to find a suitable design for recurring requirements. However, existing literature does not give sufficient insights on how both concepts are related and how the process of deriving design patterns from requirements (patterns) appears in practice. In our work, we give insights on how trust-related requirements for Ubiquitous Computing applications evolve to interdisciplinary design patterns. We elaborate on a six-step process using an example requirement pattern. With this contribution, we shed light on the relation of interdisciplinary requirement and design patterns and provide experienced practitioners and scholars regarding UC application development a way for systematic and effective pattern utilization.
2017-11-03
Collarana, Diego, Lange, Christoph, Auer, Sören.  2016.  FuhSen: A Platform for Federated, RDF-based Hybrid Search. Proceedings of the 25th International Conference Companion on World Wide Web. :171–174.
The increasing amount of structured and semi-structured information available on the Web and in distributed information systems, as well as the Web's diversification into different segments such as the Social Web, the Deep Web, or the Dark Web, requires new methods for horizontal search. FuhSen is a federated, RDF-based, hybrid search platform that searches, integrates and summarizes information about entities from distributed heterogeneous information sources using Linked Data. As a use case, we present scenarios where law enforcement institutions search and integrate data spread across these different Web segments to identify cases of organized crime. We present the architecture and implementation of FuhSen and explain the queries that can be addressed with this new approach.
2019-12-30
Belavagi, Manjula C, Muniyal, Balachandra.  2016.  Game theoretic approach towards intrusion detection. 2016 International Conference on Inventive Computation Technologies (ICICT). 1:1–5.
Today's network is distributed and heterogeneous in nature and has numerous applications which affect day to day life, such as e-Banking, e-Booking of tickets, on line shopping etc. Hence the security of the network is crucial. Threats in the network can be due to intrusions. Such threats can be observed and handled using Intrusion Detection System. The security can be achieved using intrusion detection system, which observes the data traffic and identifies it as an intrusion or not. The objective of this paper is to design a model using game theoretic approach for intrusion detection. Game model is designed by defining players, strategies and utility functions to identify the Probe attacks. This model is tested with NSLKDD data set. The model is the Probe attacks are identified by dominated strategies elimination method. Experimental results shows that game model identifies the attacks with good detection rate.
2017-11-03
Iliou, C., Kalpakis, G., Tsikrika, T., Vrochidis, S., Kompatsiaris, I..  2016.  Hybrid Focused Crawling for Homemade Explosives Discovery on Surface and Dark Web. 2016 11th International Conference on Availability, Reliability and Security (ARES). :229–234.
This work proposes a generic focused crawling framework for discovering resources on any given topic that reside on the Surface or the Dark Web. The proposed crawler is able to seamlessly traverse the Surface Web and several darknets present in the Dark Web (i.e. Tor, I2P and Freenet) during a single crawl by automatically adapting its crawling behavior and its classifier-guided hyperlink selection strategy based on the network type. This hybrid focused crawler is demonstrated for the discovery of Web resources containing recipes for producing homemade explosives. The evaluation experiments indicate the effectiveness of the proposed ap-proach both for the Surface and the Dark Web.
2023-03-31
Rousseaux, Francis, Saurel, Pierre.  2016.  The legal debate about personal data privacy at a time of big data mining and searching: Making big data researchers cooperating with lawmakers to find solutions for the future. 2016 First IEEE International Conference on Computer Communication and the Internet (ICCCI). :354–357.
At the same time as Big Data technologies are being constantly refined, the legislation relating to data privacy is changing. The invalidation by the Court of Justice of the European Union on October 6, 2015, of the agreement known as “Safe Harbor”, negotiated by the European Commission on behalf of the European Union with the United States has two consequences. The first is to announce its replacement by a new, still fragile, program, the “Privacy Shield”, which isn't yet definitive and which could also later be repealed by the Court of Justice of the European Union. For example, we are expecting to hear the opinion in mid-April 2016 of the group of data protection authorities for the various states of the European Union, known as G29. The second is to mobilize the Big Data community to take control of the question of data privacy management and to put in place an adequate internal program.
2017-11-03
Baravalle, A., Lopez, M. S., Lee, S. W..  2016.  Mining the Dark Web: Drugs and Fake Ids. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). :350–356.
In the last years, governmental bodies have been futilely trying to fight against dark web marketplaces. Shortly after the closing of "The Silk Road" by the FBI and Europol in 2013, new successors have been established. Through the combination of cryptocurrencies and nonstandard communication protocols and tools, agents can anonymously trade in a marketplace for illegal items without leaving any record. This paper presents a research carried out to gain insights on the products and services sold within one of the larger marketplaces for drugs, fake ids and weapons on the Internet, Agora. Our work sheds a light on the nature of the market, there is a clear preponderance of drugs, which accounts for nearly 80% of the total items on sale. The ready availability of counterfeit documents, while they make up for a much smaller percentage of the market, raises worries. Finally, the role of organized crime within Agora is discussed and presented.
2017-10-19
Zhang, Chenwei, Xie, Sihong, Li, Yaliang, Gao, Jing, Fan, Wei, Yu, Philip S..  2016.  Multi-source Hierarchical Prediction Consolidation. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :2251–2256.
In big data applications such as healthcare data mining, due to privacy concerns, it is necessary to collect predictions from multiple information sources for the same instance, with raw features being discarded or withheld when aggregating multiple predictions. Besides, crowd-sourced labels need to be aggregated to estimate the ground truth of the data. Due to the imperfection caused by predictive models or human crowdsourcing workers, noisy and conflicting information is ubiquitous and inevitable. Although state-of-the-art aggregation methods have been proposed to handle label spaces with flat structures, as the label space is becoming more and more complicated, aggregation under a label hierarchical structure becomes necessary but has been largely ignored. These label hierarchies can be quite informative as they are usually created by domain experts to make sense of highly complex label correlations such as protein functionality interactions or disease relationships. We propose a novel multi-source hierarchical prediction consolidation method to effectively exploits the complicated hierarchical label structures to resolve the noisy and conflicting information that inherently originates from multiple imperfect sources. We formulate the problem as an optimization problem with a closed-form solution. The consolidation result is inferred in a totally unsupervised, iterative fashion. Experimental results on both synthetic and real-world data sets show the effectiveness of the proposed method over existing alternatives.
2017-10-18
Ou, Chia-Ho, Gao, Chong-Min, Chang, Yu-Jung.  2016.  Poster: A Localization and Wireless Charging System for Wireless Rechargeable Sensor Networks Using Mobile Vehicles. Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services Companion. :141–141.
Several duty-cycling and energy-efficient communication protocols have been presented to solve power constraints of sensor nodes. The battery power of sensor nodes can be also supplied by surrounding energy resources using energy harvesting techniques. However, communication protocols only offer limited power for sensor nodes and energy harvesting may encounter a challenge that sensor nodes are unable to draw power from surrounding energy resources in certain environments. Thus, an emerging technology, wireless rechargeable sensor networks (WRSNs), is proposed to enhance the proposed communication protocols and energy harvesting techniques [1]. With a WRSN, a mobile vehicle is used to supply power to sensor nodes by wireless energy transfer. One of the most significant issue in WRSNs is path planning of the mobile vehicle. The mobile vehicle based on its movement trajectory visits each sensor nodes to recharge them so that the sensor nodes can obtain sufficient energy to execute continuous missions. However, all of the existing mobile vehicles charging methods [2, 3] for WRSNs require the locations of the sensor nodes based on the assumption that the location of each sensor node is known in advance by one of the sensor network localization mechanisms. Therefore, the proposed system integrates both the localization and wireless charging mechanisms for WRSNs to decrease the system initialization time and cost.
2017-10-19
Dupree, Janna Lynn, Devries, Richard, Berry, Daniel M., Lank, Edward.  2016.  Privacy Personas: Clustering Users via Attitudes and Behaviors Toward Security Practices. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. :5228–5239.
A primary goal of research in usable security and privacy is to understand the differences and similarities between users. While past researchers have clustered users into different groups, past categories of users have proven to be poor predictors of end-user behaviors. In this paper, we perform an alternative clustering of users based on their behaviors. Through the analysis of data from surveys and interviews of participants, we identify five user clusters that emerge from end-user behaviors-Fundamentalists, Lazy Experts, Technicians, Amateurs and the Marginally Concerned. We examine the stability of our clusters through a survey-based study of an alternative sample, showing that clustering remains consistent. We conduct a small-scale design study to demonstrate the utility of our clusters in design. Finally, we argue that our clusters complement past work in understanding privacy choices, and that our categorization technique can aid in the design of new computer security technologies.
2017-11-03
Preotiuc-Pietro, Daniel, Carpenter, Jordan, Giorgi, Salvatore, Ungar, Lyle.  2016.  Studying the Dark Triad of Personality Through Twitter Behavior. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :761–770.
Research into the darker traits of human nature is growing in interest especially in the context of increased social media usage. This allows users to express themselves to a wider online audience. We study the extent to which the standard model of dark personality – the dark triad – consisting of narcissism, psychopathy and Machiavellianism, is related to observable Twitter behavior such as platform usage, posted text and profile image choice. Our results show that we can map various behaviors to psychological theory and study new aspects related to social media usage. Finally, we build a machine learning algorithm that predicts the dark triad of personality in out-of-sample users with reliable accuracy.