Biblio
Choosing how to write natural language scenarios is challenging, because stakeholders may over-generalize their descriptions or overlook or be unaware of alternate scenarios. In security, for example, this can result in weak security constraints that are too general, or missing constraints. Another challenge is that analysts are unclear on where to stop generating new scenarios. In this paper, we introduce the Multifactor Quality Method (MQM) to help requirements analysts to empirically collect system constraints in scenarios based on elicited expert preferences. The method combines quantitative statistical analysis to measure system quality with qualitative coding to extract new requirements. The method is bootstrapped with minimal analyst expertise in the domain affected by the quality area, and then guides an analyst toward selecting expert-recommended requirements to monotonically increase system quality. We report the results of applying the method to security. This include 550 requirements elicited from 69 security experts during a bootstrapping stage, and subsequent evaluation of these results in a verification stage with 45 security experts to measure the overall improvement of the new requirements. Security experts in our studies have an average of 10 years of experience. Our results show that using our method, we detect an increase in the security quality ratings collected in the verification stage. Finally, we discuss how our proposed method helps to improve security requirements elicitation, analysis, and measurement.
Compute-intensive simulations typically charge substantial workloads on an online simulation platform backed by limited computing clusters and storage resources. Some (or most) of the simulations initiated by users may accompany input parameters/files that have been already provided by other (or same) users in the past. Unfortunately, these duplicate simulations may aggravate the performance of the platform by drastic consumption of the limited resources shared by a number of users on the platform. To minimize or avoid conducting repeated simulations, we present a novel system, called SUPERMAN (SimUlation ProvEnance Recycling MANager) that can record simulation provenances and recycle the results of past simulations. This system presents a great opportunity to not only reutilize existing results but also perform various analytics helpful for those who are not familiar with the platform. The system also offers interoperability across other systems by collecting the provenances in a standardized format. In our simulated experiments we found that over half of past computing jobs could be answered without actual executions by our system.
Over the last years, the number of rather simple interconnected devices in nonindustrial scenarios (e.g., for home automation) has steadily increased. For ease of use, the overall system security is often neglected. Before the Internet of Things (IoT) reaches the same distribution rate and impact in industrial applications, where security is crucial for success, solutions that combine usability, scalability, and security are required. We develop such a security system, mainly targeting sensor modules equipped with Radio Frequency IDentification (RFID) tags which we leverage to increase the security level. More specifically, we consider a network based on Message Queue Telemetry Transport (MQTT) which is a widely adopted protocol for the IoT.
For mobile phone users, short message service (SMS) is the most commonly used text-based communication type on mobile devices. Users can interact with other users and services via SMS. For example, users can send private messages, use information services, apply for a job advertisement, conduct bank transactions, and so on. Users should be very careful when using SMS. During the sending of SMS, the message content should be aware that it can be captured and act accordingly. Based on these findings, the elderly, called as “Silent Generation” which represents 70 years or older adults, are text messaging much more than they did in the past. Therefore, they need solutions which are both simple and secure enough if there is a need to send sensitive information via SMS. In this study, we propose and develop an android application to secure text messages. The application has a simple and easy-to-use graphical user interface but provides significant security.
Tracing and integrating security requirements throughout the development process is a key challenge in security engineering. In socio-technical systems, security requirements for the organizational and technical aspects of a system are currently dealt with separately, giving rise to substantial misconceptions and errors. In this paper, we present a model-based security engineering framework for supporting the system design on the organizational and technical level. The key idea is to allow the involved experts to specify security requirements in the languages they are familiar with: business analysts use BPMN for procedural system descriptions; system developers use UML to design and implement the system architecture. Security requirements are captured via the language extensions SecBPMN2 and UMLsec. We provide a model transformation to bridge the conceptual gap between SecBPMN2 and UMLsec. Using UMLsec policies, various security properties of the resulting architecture can be verified. In a case study featuring an air traffic management system, we show how our framework can be practically applied.
The tree-based tags anti-collision algorithm is an important method in the anti-collision algorithms. In this paper, several typical tree algorithms are evaluated. The comparison of algorithms is summarized including time complexity, communication complexity and recognition, and the characteristics and disadvantages of each algorithm are pointed out. Finally, the improvement strategies of tree anti-collision algorithm are proposed, and the future research directions are also prospected.
This research was an experimental analysis of the Intrusion Detection Systems(IDS) with Honey Pot conducting through a study of using Honey Pot in tricking, delaying or deviating the intruder to attack new media broadcasting server for IPTV system. Denial of Service(DoS) over wire network and wireless network consisted of three types of attacks: TCP Flood, UDP Flood and ICMP Flood by Honey Pot, where the Honeyd would be used. In this simulation, a computer or a server in the network map needed to be secured by the inactivity firewalls or other security tools for the intrusion of the detection systems and Honey Pot. The network intrusion detection system used in this experiment was SNORT (www.snort.org) developed in the form of the Open Source operating system-Linux. The results showed that, from every experiment, the internal attacks had shown more threat than the external attacks. In addition, attacks occurred through LAN network posted 50% more disturb than attacks occurred on WIFI. Also, the external attacks through LAN posted 95% more attacks than through WIFI. However, the number of attacks presented by TCP, UDP and ICMP were insignificant. This result has supported the assumption that Honey Pot was able to help detecting the intrusion. In average, 16% of the attacks was detected by Honey Pot in every experiment.
The UHF Radiofrequency Identification technology offers nowadays a viable technological solution for the implementation of low-level environmental monitoring of connected critical infrastructures to be protected from both physical threats and cyber attacks. An RFID sensor network was developed within the H2020 SCISSOR project, by addressing the design of both hardware components, that is a new family of multi-purpose wireless boards, and of control software handling the network topology. The hierarchical system is able to the detect complex, potentially dangerous, events such as the un-authorized access to a restricted area, anomalies of the electrical equipments, or the unusual variation of environmental parameters. The first real-world test-bed has been deployed inside an operational smart-grid on the Favignana Island. Currently, the network is fully working and remotely accessible.
Interconnected everyday objects, either via public or private networks, are gradually becoming reality in modern life - often referred to as the Internet of Things (IoT) or Cyber-Physical Systems (CPS). One stand-out example are those systems based on Unmanned Aerial Vehicles (UAVs). Fleets of such vehicles (drones) are prophesied to assume multiple roles from mundane to high-sensitive applications, such as prompt pizza or shopping deliveries to the home, or to deployment on battlefields for battlefield and combat missions. Drones, which we refer to as UAVs in this paper, can operate either individually (solo missions) or as part of a fleet (group missions), with and without constant connection with a base station. The base station acts as the command centre to manage the drones' activities; however, an independent, localised and effective fleet control is necessary, potentially based on swarm intelligence, for several reasons: 1) an increase in the number of drone fleets; 2) fleet size might reach tens of UAVs; 3) making time-critical decisions by such fleets in the wild; 4) potential communication congestion and latency; and 5) in some cases, working in challenging terrains that hinders or mandates limited communication with a control centre, e.g. operations spanning long period of times or military usage of fleets in enemy territory. This self-aware, mission-focused and independent fleet of drones may utilise swarm intelligence for a), air-traffic or flight control management, b) obstacle avoidance, c) self-preservation (while maintaining the mission criteria), d) autonomous collaboration with other fleets in the wild, and e) assuring the security, privacy and safety of physical (drones itself) and virtual (data, software) assets. In this paper, we investigate the challenges faced by fleet of drones and propose a potential course of action on how to overcome them.
Clean slate design of computing system is an emerging topic for continuing growth of warehouse-scale computers. A famous custom design is rackscale (RS) computing by considering a single rack as a computer that consists of a number of processors, storages and accelerators customized to a target application. In RS, each user is expected to occupy a single or more than one rack. However, new users frequently appear and the users often change their application scales and parameters that would require different numbers of processors, storages and accelerators in a rack. The reconfiguration of interconnection networks on their components is potentially needed to support the above demand in RS. In this context, we propose the inter-rackscale (IRS) architecture that disaggregates various hardware resources into different racks according to their own areas. The heart of IRS is to use free-space optics (FSO) for tightly-coupled connections between processors, storages and GPUs distributed in different racks, by swapping endpoints of FSO links to change network topologies. Through a large IRS system simulation, we show that by utilizing FSO links for interconnection between racks, the FSO-equipped IRS architecture can provide comparable communication latency between heterogeneous resources to that of the counterpart RS architecture. A utilization of 3 FSO terminals per rack can improve at least 87.34% of inter-CPU/SSD(GPU) communication over Fat-tree and improve at least 92.18% of that over 2-D Torus. We verify the advantages of IRS over RS in job scheduling performance.