Biblio

Found 2393 results

Filters: Keyword is human factors  [Clear All Filters]
2018-02-06
Shi, Y., Piao, C., Zheng, L..  2017.  Differential-Privacy-Based Correlation Analysis in Railway Freight Service Applications. 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :35–39.

With the development of modern logistics industry railway freight enterprises as the main traditional logistics enterprises, the service mode is facing many problems. In the era of big data, for railway freight enterprises, coordinated development and sharing of information resources have become the requirements of the times, while how to protect the privacy of citizens has become one of the focus issues of the public. To prevent the disclosure or abuse of the citizens' privacy information, the citizens' privacy needs to be preserved in the process of information opening and sharing. However, most of the existing privacy preserving models cannot to be used to resist attacks with continuously growing background knowledge. This paper presents the method of applying differential privacy to protect associated data, which can be shared in railway freight service association information. First, the original service data need to slice by optimal shard length, then differential method and apriori algorithm is used to add Laplace noise in the Candidate sets. Thus the citizen's privacy information can be protected even if the attacker gets strong background knowledge. Last, sharing associated data to railway information resource partners. The steps and usefulness of the discussed privacy preservation method is illustrated by an example.

2018-11-19
Cebe, M., Akkaya, K..  2017.  Efficient Management of Certificate Revocation Lists in Smart Grid Advanced Metering Infrastructure. 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :313–317.

Advanced Metering Infrastructure (AMI) forms a communication network for the collection of power data from smart meters in Smart Grid. As the communication within an AMI needs to be secure, key management becomes an issue due to overhead and limited resources. While using public-keys eliminate some of the overhead of key management, there is still challenges regarding certificates that store and certify the public-keys. In particular, distribution and storage of certificate revocation list (CRL) is major a challenge due to cost of distribution and storage in AMI networks which typically consist of wireless multi-hop networks. Motivated by the need of keeping the CRL distribution and storage cost effective and scalable, in this paper, we present a distributed CRL management model utilizing the idea of distributed hash trees (DHTs) from peer-to-peer (P2P) networks. The basic idea is to share the burden of storage of CRLs among all the smart meters by exploiting the meshing capability of the smart meters among each other. Thus, using DHTs not only reduces the space requirements for CRLs but also makes the CRL updates more convenient. We implemented this structure on ns-3 using IEEE 802.11s mesh standard as a model for AMI and demonstrated its superior performance with respect to traditional methods of CRL management through extensive simulations.

2017-12-20
Lukaseder, T., Hunt, A., Stehle, C., Wagner, D., Heijden, R. v d, Kargl, F..  2017.  An Extensible Host-Agnostic Framework for SDN-Assisted DDoS-Mitigation. 2017 IEEE 42nd Conference on Local Computer Networks (LCN). :619–622.

Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar

2018-11-19
Sun, K., Esnaola, I., Perlaza, S. M., Poor, H. V..  2017.  Information-Theoretic Attacks in the Smart Grid. 2017 IEEE International Conference on Smart Grid Communications (SmartGridComm). :455–460.

Gaussian random attacks that jointly minimize the amount of information obtained by the operator from the grid and the probability of attack detection are presented. The construction of the attack is posed as an optimization problem with a utility function that captures two effects: firstly, minimizing the mutual information between the measurements and the state variables; secondly, minimizing the probability of attack detection via the Kullback-Leibler (KL) divergence between the distribution of the measurements with an attack and the distribution of the measurements without an attack. Additionally, a lower bound on the utility function achieved by the attacks constructed with imperfect knowledge of the second order statistics of the state variables is obtained. The performance of the attack construction using the sample covariance matrix of the state variables is numerically evaluated. The above results are tested in the IEEE 30-Bus test system.

2018-02-15
Hufstetler, W. A., Ramos, M. J. H., Wang, S..  2017.  NFC Unlock: Secure Two-Factor Computer Authentication Using NFC. 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :507–510.

Our project, NFC Unlock, implements a secure multifactor authentication system for computers using Near Field Communication technology. The application is written in C\# with pGina. It implements an NFC authentication which replaces the standard Windows credentials to allow the use of an NFC tag and a passcode to authenticate the user. Unlike the most prevalent multifactor authentication methods, NFC authentication does not require a user wait for an SMS code to type into the computer. A user enters a passcode and scans the NFC tag to log in. In order to prevent the data from being hacked, the system encrypts the NFC tag ID and the passcode with Advanced Encryption Standard. Users can easily register an NFC tag and link it to their computer account. The program also has several extra features including text alerts, record keeping of all login and login attempts, and a user-friendly configuration menu. Initial tests show that the NFC-based multifactor authentication system has the advantage of improved security with a simplified login process.

2018-01-10
Zhang, Jun, Cormode, Graham, Procopiuc, Cecilia M., Srivastava, Divesh, Xiao, Xiaokui.  2017.  PrivBayes: Private Data Release via Bayesian Networks. ACM Trans. Database Syst.. 42:25:1–25:41.
Privacy-preserving data publishing is an important problem that has been the focus of extensive study. The state-of-the-art solution for this problem is differential privacy, which offers a strong degree of privacy protection without making restrictive assumptions about the adversary. Existing techniques using differential privacy, however, cannot effectively handle the publication of high-dimensional data. In particular, when the input dataset contains a large number of attributes, existing methods require injecting a prohibitive amount of noise compared to the signal in the data, which renders the published data next to useless. To address the deficiency of the existing methods, this paper presents PrivBayes, a differentially private method for releasing high-dimensional data. Given a dataset D, PrivBayes first constructs a Bayesian network N, which (i) provides a succinct model of the correlations among the attributes in D and (ii) allows us to approximate the distribution of data in D using a set P of low-dimensional marginals of D. After that, PrivBayes injects noise into each marginal in P to ensure differential privacy and then uses the noisy marginals and the Bayesian network to construct an approximation of the data distribution in D. Finally, PrivBayes samples tuples from the approximate distribution to construct a synthetic dataset, and then releases the synthetic data. Intuitively, PrivBayes circumvents the curse of dimensionality, as it injects noise into the low-dimensional marginals in P instead of the high-dimensional dataset D. Private construction of Bayesian networks turns out to be significantly challenging, and we introduce a novel approach that uses a surrogate function for mutual information to build the model more accurately. We experimentally evaluate PrivBayes on real data and demonstrate that it significantly outperforms existing solutions in terms of accuracy.
2018-02-02
Anderson, E. C., Okafor, K. C., Nkwachukwu, O., Dike, D. O..  2017.  Real time car parking system: A novel taxonomy for integrated vehicular computing. 2017 International Conference on Computing Networking and Informatics (ICCNI). :1–9.
Automation of real time car parking system (RTCPS) using mobile cloud computing (MCC) and vehicular networking (VN) has given rise to a novel concept of integrated communication-computing platforms (ICCP). The aim of ICCP is to evolve an effective means of addressing challenges such as improper parking management scheme, traffic congestion in parking lots, insecurity of vehicles (safety applications), and other Infrastructure-to-Vehicle (I2V) services for providing data dissemination and content delivery services to connected Vehicular Clients (VCs). Edge (parking lot based) Fog computing (EFC) through road side sensor based monitoring is proposed to achieve ICCP. A real-time cloud to vehicular clients (VCs) in the context of smart car parking system (SCPS) which satisfies deterministic and non-deterministic constraints is introduced. Vehicular cloud computing (VCC) and intra-Edge-Fog node architecture is presented for ICCP. This is targeted at distributed mini-sized self-energized Fog nodes/data centers, placed between distributed remote cloud and VCs. The architecture processes data-disseminated real-time services to the connected VCs. The work built a prototype testbed comprising a black box PSU, Arduino IoT Duo, GH-311RT ultrasonic distance sensor and SHARP 2Y0A21 passive infrared sensor for vehicle detection; LinkSprite 2MP UART JPEG camera module, SD card module, RFID card reader, RDS3115 metal gear servo motors, FPM384 fingerprint scanner, GSM Module and a VCC web portal. The testbed functions at the edge of the vehicular network and is connected to the served VCs through Infrastructure-to-Vehicular (I2V) TCP/IP-based single-hop mobile links. This research seeks to facilitate urban renewal strategies and highlight the significance of ICCP prototype testbed. Open challenges and future research directions are discussed for an efficient VCC model which runs on networked fog centers (NetFCs).
2018-02-06
Berkowsky, J. A., Hayajneh, T..  2017.  Security Issues with Certificate Authorities. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :449–455.

The current state of the internet relies heavily on SSL/TLS and the certificate authority model. This model has systematic problems, both in its design as well as its implementation. There are problems with certificate revocation, certificate authority governance, breaches, poor security practices, single points of failure and with root stores. This paper begins with a general introduction to SSL/TLS and a description of the role of certificates, certificate authorities and root stores in the current model. This paper will then explore problems with the current model and describe work being done to help mitigate these problems.

2018-02-15
Wang, C., Lizana, F. R., Li, Z., Peterchev, A. V., Goetz, S. M..  2017.  Submodule short-circuit fault diagnosis based on wavelet transform and support vector machines for modular multilevel converter with series and parallel connectivity. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :3239–3244.

The modular multilevel converter with series and parallel connectivity was shown to provide advantages in several industrial applications. Its reliability largely depends on the absence of failures in the power semiconductors. We propose and analyze a fault-diagnosis technique to identify shorted switches based on features generated through wavelet transform of the converter output and subsequent classification in support vector machines. The multi-class support vector machine is trained with multiple recordings of the output of each fault condition as well as the converter under normal operation. Simulation results reveal that the proposed method has high classification latency and high robustness. Except for the monitoring of the output, which is required for the converter control in any case, this method does not require additional module sensors.

2018-02-06
Khan, M. F. F., Sakamura, K..  2017.  A Tamper-Resistant Digital Token-Based Rights Management System. 2017 International Carnahan Conference on Security Technology (ICCST). :1–6.

Use of digital token - which certifies the bearer's rights to some kind of products or services - is quite common nowadays for its convenience, ease of use and cost-effectiveness. Many of such digital tokens, however, are produced with software alone, making them vulnerable to forgery, including alteration and duplication. For a more secure safeguard for both token owner's right and service provider's accountability, digital tokens should be tamper-resistant as much as possible in order for them to withstand physical attacks as well. In this paper, we present a rights management system that leverages tamper-resistant digital tokens created by hardware-software collaboration in our eTRON architecture. The system features the complete life cycle of a digital token from generation to storage and redemption. Additionally, it provides a secure mechanism for transfer of rights in a peer-to-peer manner over the Internet. The proposed system specifies protocols for permissible manipulation on digital tokens, and subsequently provides a set of APIs for seamless application development. Access privileges to the tokens are strictly defined and state-of-the-art asymmetric cryptography is used for ensuring their confidentiality. Apart from the digital tokens being physically tamper-resistant, the protocols involved in the system are proven to be secure against attacks. Furthermore, an authentication mechanism is implemented that invariably precedes any operation involving the digital token in question. The proposed system presents clear security gains compared to existing systems that do not take tamper-resistance into account, and schemes that use symmetric key cryptography.

2017-12-20
Liu, Z., Liu, Y., Winter, P., Mittal, P., Hu, Y. C..  2017.  TorPolice: Towards enforcing service-defined access policies for anonymous communication in the Tor network. 2017 IEEE 25th International Conference on Network Protocols (ICNP). :1–10.
Tor is the most widely used anonymity network, currently serving millions of users each day. However, there is no access control in place for all these users, leaving the network vulnerable to botnet abuse and attacks. For example, criminals frequently use exit relays as stepping stones for attacks, causing service providers to serve CAPTCHAs to exit relay IP addresses or blacklisting them altogether, which leads to severe usability issues for legitimate Tor users. To address this problem, we propose TorPolice, the first privacy-preserving access control framework for Tor. TorPolice enables abuse-plagued service providers such as Yelp to enforce access rules to police and throttle malicious requests coming from Tor while still providing service to legitimate Tor users. Further, TorPolice equips Tor with global access control for relays, enhancing Tor's resilience to botnet abuse. We show that TorPolice preserves the privacy of Tor users, implement a prototype of TorPolice, and perform extensive evaluations to validate our design goals.
2017-12-12
Fayyad, S., Noll, J..  2017.  Toward objective security measurability and manageability. 2017 14th International Conference on Smart Cities: Improving Quality of Life Using ICT IoT (HONET-ICT). :98–104.

Security Evaluation and Management (SEM) is considerably important process to protect the Embedded System (ES) from various kinds of security's exploits. In general, SEM's processes have some challenges, which limited its efficiency. Some of these challenges are system-based challenges like the hetero-geneity among system's components and system's size. Some other challenges are expert-based challenges like mis-evaluation possibility and experts non-continuous availability. Many of these challenges were addressed by the Multi Metric (MM) framework, which depends on experts' or subjective evaluation for basic evaluations. Despite of its productivity, subjective evaluation has some drawbacks (e.g. expert misevaluation) foster the need for considering objective evaluations in the MM framework. In addition, the MM framework is system centric framework, thus, by modelling complex and huge system using the MM framework a guide is needed indicating changes toward desirable security's requirements. This paper proposes extensions for the MM framework consider the usage of objective evaluations and work as guide for needed changes to satisfy desirable security requirements.

2018-02-02
Kim, H., Ben-Othman, J., Mokdad, L., Cho, S., Bellavista, P..  2017.  On collision-free reinforced barriers for multi domain IoT with heterogeneous UAVs. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :466–471.

Thanks to advancement of vehicle technologies, Unmanned Aerial Vehicle (UAV) now widely spread over practical services and applications affecting daily life of people positively. Especially, multiple heterogeneous UAVs with different capabilities should be considered since UAVs can play an important role in Internet of Things (IoT) environment in which the heterogeneity and the multi domain of UAVs are indispensable. Also, a concept of barrier-coverage has been proved as a promising one applicable to surveillance and security. In this paper, we present collision-free reinforced barriers by heterogeneous UAVs to support multi domain. Then, we define a problem which is to minimize maximum movement of UAVs on condition that a property of collision-free among UAVs is assured while they travel from current positions to specific locations so as to form reinforced barriers within multi domain. Because the defined problem depends on how to locate UAVs on barriers, we develop a novel approach that provides a collision-free movement as well as a creation of virtual lines in multi domain. Furthermore, we address future research topics which should be handled carefully for the barrier-coverage by heterogeneous UAVs.

2018-08-23
Xu, D., Xiao, L., Sun, L., Lei, M..  2017.  Game theoretic study on blockchain based secure edge networks. 2017 IEEE/CIC International Conference on Communications in China (ICCC). :1–5.

Blockchain has been applied to study data privacy and network security recently. In this paper, we propose a punishment scheme based on the action record on the blockchain to suppress the attack motivation of the edge servers and the mobile devices in the edge network. The interactions between a mobile device and an edge server are formulated as a blockchain security game, in which the mobile device sends a request to the server to obtain real-time service or launches attacks against the server for illegal security gains, and the server chooses to perform the request from the device or attack it. The Nash equilibria (NEs) of the game are derived and the conditions that each NE exists are provided to disclose how the punishment scheme impacts the adversary behaviors of the mobile device and the edge server.

2018-02-21
Grgić, K., Kovačevic, Z., Čik, V. K..  2017.  Performance analysis of symmetric block cryptosystems on Android platform. 2017 International Conference on Smart Systems and Technologies (SST). :155–159.

The symmetric block ciphers, which represent a core element for building cryptographic communications systems and protocols, are used in providing message confidentiality, authentication and integrity. Various limitations in hardware and software resources, especially in terminal devices used in mobile communications, affect the selection of appropriate cryptosystem and its parameters. In this paper, an implementation of three symmetric ciphers (DES, 3DES, AES) used in different operating modes are analyzed on Android platform. The cryptosystems' performance is analyzed in different scenarios using several variable parameters: cipher, key size, plaintext size and number of threads. Also, the influence of parallelization supported by multi-core CPUs on cryptosystem performance is analyzed. Finally, some conclusions about the parameter selection for optimal efficiency are given.

2018-09-12
Lin, Z., Tong, L., Zhijie, M., Zhen, L..  2017.  Research on Cyber Crime Threats and Countermeasures about Tor Anonymous Network Based on Meek Confusion Plug-in. 2017 International Conference on Robots Intelligent System (ICRIS). :246–249.

According to the new Tor network (6.0.5 version) can help the domestic users easily realize "over the wall", and of course criminals may use it to visit deep and dark website also. The paper analyzes the core technology of the new Tor network: the new flow obfuscation technology based on meek plug-in and real instance is used to verify the new Tor network's fast connectivity. On the basis of analyzing the traffic confusion mechanism and the network crime based on Tor, it puts forward some measures to prevent the using of Tor network to implement network crime.

2018-05-30
Joy, Joshua, Gerla, Mario.  2017.  Privacy Risks in Vehicle Grids and Autonomous Cars. Proceedings of the 2Nd ACM International Workshop on Smart, Autonomous, and Connected Vehicular Systems and Services. :19–23.

Traditionally, the vehicle has been the extension of the manual ambulatory system, docile to the drivers' commands. Recent advances in communications, controls and embedded systems have changed this model, paving the way to the Intelligent Vehicle Grid. The car is now a formidable sensor platform, absorbing information from the environment, from other cars (and from the driver) and feeding it to other cars and infrastructure to assist in safe navigation, pollution control and traffic management. The next step in this evolution is just around the corner: the Internet of Autonomous Vehicles. Like other important instantiations of the Internet of Things (e.g., the smart building, etc), the Internet of Vehicles will not only upload data to the Internet with V2I. It will also use V2V communications, storage, intelligence, and learning capabilities to anticipate the customers' intentions and learn from other peers. V2I and V2V are essential to the autonomous vehicle, but carry the risk of attacks. This paper will address the privacy attacks to which vehicles are exposed when they upload private data to Internet Servers. It will also outline efficient methods to preserve privacy.

2018-09-12
Montieri, A., Ciuonzo, D., Aceto, G., Pescape, A..  2017.  Anonymity Services Tor, I2P, JonDonym: Classifying in the Dark. 2017 29th International Teletraffic Congress (ITC 29). 1:81–89.

Traffic classification, i.e. associating network traffic to the application that generated it, is an important tool for several tasks, spanning on different fields (security, management, traffic engineering, R&D). This process is challenged by applications that preserve Internet users' privacy by encrypting the communication content, and even more by anonymity tools, additionally hiding the source, the destination, and the nature of the communication. In this paper, leveraging a public dataset released in 2017, we provide (repeatable) classification results with the aim of investigating to what degree the specific anonymity tool (and the traffic it hides) can be identified, when compared to the traffic of the other considered anonymity tools, using machine learning approaches based on the sole statistical features. To this end, four classifiers are trained and tested on the dataset: (i) Naïve Bayes, (ii) Bayesian Network, (iii) C4.5, and (iv) Random Forest. Results show that the three considered anonymity networks (Tor, I2P, JonDonym) can be easily distinguished (with an accuracy of 99.99%), telling even the specific application generating the traffic (with an accuracy of 98.00%).

2018-02-02
Noguchi, T., Yamamoto, T..  2017.  Black hole attack prevention method using dynamic threshold in mobile ad hoc networks. 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). :797–802.

A mobile ad hoc network (MANET) is a collection of mobile nodes that do not need to rely on a pre-existing network infrastructure or centralized administration. Securing MANETs is a serious concern as current research on MANETs continues to progress. Each node in a MANET acts as a router, forwarding data packets for other nodes and exchanging routing information between nodes. It is this intrinsic nature that introduces the serious security issues to routing protocols. A black hole attack is one of the well-known security threats for MANETs. A black hole is a security attack in which a malicious node absorbs all data packets by sending fake routing information and drops them without forwarding them. In order to defend against a black hole attack, in this paper we propose a new threshold-based black hole attack prevention method. To investigate the performance of the proposed method, we compared it with existing methods. Our simulation results show that the proposed method outperforms existing methods from the standpoints of black hole node detection rate, throughput, and packet delivery rate.

2017-12-28
Vizarreta, P., Heegaard, P., Helvik, B., Kellerer, W., Machuca, C. M..  2017.  Characterization of failure dynamics in SDN controllers. 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM). :1–7.

With Software Defined Networking (SDN) the control plane logic of forwarding devices, switches and routers, is extracted and moved to an entity called SDN controller, which acts as a broker between the network applications and physical network infrastructure. Failures of the SDN controller inhibit the network ability to respond to new application requests and react to events coming from the physical network. Despite of the huge impact that a controller has on the network performance as a whole, a comprehensive study on its failure dynamics is still missing in the state of the art literature. The goal of this paper is to analyse, model and evaluate the impact that different controller failure modes have on its availability. A model in the formalism of Stochastic Activity Networks (SAN) is proposed and applied to a case study of a hypothetical controller based on commercial controller implementations. In case study we show how the proposed model can be used to estimate the controller steady state availability, quantify the impact of different failure modes on controller outages, as well as the effects of software ageing, and impact of software reliability growth on the transient behaviour.

2018-02-02
Kim, M., Jang, I., Choo, S., Koo, J., Pack, S..  2017.  Collaborative security attack detection in software-defined vehicular networks. 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS). :19–24.

Vehicular ad hoc networks (VANETs) are taking more attention from both the academia and the automotive industry due to a rapid development of wireless communication technologies. And with this development, vehicles called connected cars are increasingly being equipped with more sensors, processors, storages, and communication devices as they start to provide both infotainment and safety services through V2X communication. Such increase of vehicles is also related to the rise of security attacks and potential security threats. In a vehicular environment, security is one of the most important issues and it must be addressed before VANETs can be widely deployed. Conventional VANETs have some unique characteristics such as high mobility, dynamic topology, and a short connection time. Since an attacker can launch any unexpected attacks, it is difficult to predict these attacks in advance. To handle this problem, we propose collaborative security attack detection mechanism in a software-defined vehicular networks that uses multi-class support vector machine (SVM) to detect various types of attacks dynamically. We compare our security mechanism to existing distributed approach and present simulation results. The results demonstrate that the proposed security mechanism can effectively identify the types of attacks and achieve a good performance regarding high precision, recall, and accuracy.

2017-12-20
Lacerda, A., Rodrigues, J., Macedo, J., Albuquerque, E..  2017.  Deployment and analysis of honeypots sensors as a paradigm to improve security on systems. 2017 Internet Technologies and Applications (ITA). :64–68.
This article is about study of honeypots. In this work, we use some honeypot sensors deployment and analysis to identify, currently, what are the main attacks and security breaches explored by attackers to compromise systems. For example, a common server or service exposed to the Internet can receive a million of hits per day, but sometimes would not be easy to identify the difference between legitimate access and an attacker trying to scan, and then, interrupt the service. Finally, the objective of this research is to investigate the efficiency of the honeypots sensors to identify possible safety gaps and new ways of attacks. This research aims to propose some guidelines to avoid or minimize the damage caused by these attacks in real systems.
2018-11-19
Nasr, E., Shahrour, I..  2017.  Evaluating Wireless Network Vulnerabilities and Attack Paths in Smart Grid Comprehensive Analysis and Implementation. 2017 Sensors Networks Smart and Emerging Technologies (SENSET). :1–4.

Quantifying vulnerability and security levels for smart grid diversified link of networks have been a challenging task for a long period of time. Security experts and network administrators used to act based on their proficiencies and practices to mitigate network attacks rather than objective metrics and models. This paper uses the Markov Chain Model [1] to evaluate quantitatively the vulnerabilities associated to the 802.11 Wi-Fi network in a smart grid. Administrator can now assess the level of severity of potential attacks based on determining the probability density of the successive states and thus, providing the corresponding security measures. This model is based on the observed vulnerabilities provided by the Common Vulnerabilities and Exposures (CVE) database explored by MITRE [2] to calculate the Markov processes (states) transitions probabilities and thus, deducing the vulnerability level of the entire attack paths in an attack graph. Cumulative probabilities referring to high vulnerability level in a specific attack path will lead the system administrator to apply appropriate security measures a priori to potential attacks occurrence.

2017-12-20
Adhatarao, S. S., Arumaithurai, M., Fu, X..  2017.  FOGG: A Fog Computing Based Gateway to Integrate Sensor Networks to Internet. 2017 29th International Teletraffic Congress (ITC 29). 2:42–47.
Internet of Things (IoT) is a growing topic of interest along with 5G. Billions of IoT devices are expected to connect to the Internet in the near future. These devices differ from the traditional devices operated in the Internet. We observe that Information Centric Networking (ICN), is a more suitable architecture for the IoT compared to the prevailing IP basednetwork. However, we observe that recent works that propose to use ICN for IoT, either do not cover the need to integrate Sensor Networks with the Internet to realize IoT or do so inefficiently. Fog computing is a promising technology that has many benefits to offer especially for IoT. In this work, we discover a need to integrate various heterogeneous Sensor Networks with the Internet to realize IoT and propose FOGG: A Fog Computing Based Gateway to Integrate Sensor Networks to Internet. FOGG uses a dedicated device to function as an IoT gateway. FOGG provides the needed integration along with additional services like name/protocol translation, security and controller functionalities.
2018-02-21
Henneke, D., Freudenmann, C., Wisniewski, L., Jasperneite, J..  2017.  Implementation of industrial cloud applications as controlled local systems (CLS) in a smart grid context. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–7.

In Germany, as of 2017, a new smart metering infrastructure based on high security and privacy requirements will be deployed. It provides interfaces to connect meters for different commodities, to allow end users to retrieve the collected measurement data, to connect to the metering operators, and to connect Controllable Local Systems (CLSs) that establish a TLS secured connection to third parties in order to exchange data or for remote controlling of energy devices. This paper aims to connect industrial machines as CLS devices since it shows that the demands and main ideas of remotely controlled devices in the Smart Grid context and Industrial Cloud Applications match on the communication level. It describes the general architecture of the Smart Metering infrastructure in Germany, introduces the defined roles, depicts the configuration process on the different organizational levels, demonstrates the connection establishment and the initiating partners, concludes on the potential industrial use cases of this infrastructure, and provides open questions and room for further research.