Biblio

Found 299 results

Filters: Keyword is simulation  [Clear All Filters]
2022-01-31
Xiong, Jiaqi, Zeng, Xin, Xue, Xiaoping, Ma, Jingxiao.  2021.  An Efficient Group Secret Key Generation Scheme for Wireless Sensor Network. 2021 International Conference on Wireless Communications and Smart Grid (ICWCSG). :302–308.
The Internet of Things technology is one of the important directions of Smart Grid research, involving many wireless sensors and communication facilities, and has high requirements for security. The physical layer security technology can effectively solve the security problems under wireless communication. As the most common application scenario of wireless communication is multi-node wireless network communication, group secret key (GSK) based on physical layer security and information theory security is gradually attracting investigator’s interest. In this paper, a novel physical layer GSK generation scheme based on code-domain exchange of channel information in mesh network is proposed. Instead of traditional side-information exchange in symbol-domain, error-correcting code is applied to finish information exchange and reconciliation simultaneously in code-domain. Each node processes the known channel bit sequence and then encodes it to generate a check sequence. After broadcasting the check bit sequence to other nodes, each node decodes the received check bit sequences to obtained the unknown channel information. The simulation results show that the scheme can effectively reduce the times of information exchanges while keeping a good performance including low bit error rate and low block error rate.
2021-12-22
Kim, Jiha, Park, Hyunhee.  2021.  OA-GAN: Overfitting Avoidance Method of GAN Oversampling Based on xAI. 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN). :394–398.
The most representative method of deep learning is data-driven learning. These methods are often data-dependent, and lack of data leads to poor learning. There is a GAN method that creates a likely image as a way to solve a problem that lacks data. The GAN determines that the discriminator is fake/real with respect to the image created so that the generator learns. However, overfitting problems when the discriminator becomes overly dependent on the learning data. In this paper, we explain overfitting problem when the discriminator decides to fake/real using xAI. Depending on the area of the described image, it is possible to limit the learning of the discriminator to avoid overfitting. By doing so, the generator can produce similar but more diverse images.
2022-08-12
Oshnoei, Soroush, Aghamohammadi, Mohammadreza.  2021.  Detection and Mitigation of Coordinate False DataInjection Attacks in Frequency Control of Power Grids. 2021 11th Smart Grid Conference (SGC). :1—5.
In modern power grids (PGs), load frequency control (LFC) is effectively employed to preserve the frequency within the allowable ranges. However, LFC dependence on information and communication technologies (ICTs) makes PGs vulnerable to cyber attacks. Manipulation of measured data and control commands known as false data injection attacks (FDIAs) can negatively affect grid frequency performance and destabilize PG. This paper investigates the frequency performance of an isolated PG under coordinated FDIAs. A control scheme based on the combination of a Kalman filter, a chi-square detector, and a linear quadratic Gaussian controller is proposed to detect and mitigate the coordinated FDIAs. The efficiency of the proposed control scheme is evaluated under two types of scaling and exogenous FDIAs. The simulation results demonstrate that the proposed control scheme has significant capabilities to detect and mitigate the designed FDIAs.
2022-08-26
Chen, Bo, Hawkins, Calvin, Yazdani, Kasra, Hale, Matthew.  2021.  Edge Differential Privacy for Algebraic Connectivity of Graphs. 2021 60th IEEE Conference on Decision and Control (CDC). :2764—2769.
Graphs are the dominant formalism for modeling multi-agent systems. The algebraic connectivity of a graph is particularly important because it provides the convergence rates of consensus algorithms that underlie many multi-agent control and optimization techniques. However, sharing the value of algebraic connectivity can inadvertently reveal sensitive information about the topology of a graph, such as connections in social networks. Therefore, in this work we present a method to release a graph’s algebraic connectivity under a graph-theoretic form of differential privacy, called edge differential privacy. Edge differential privacy obfuscates differences among graphs’ edge sets and thus conceals the absence or presence of sensitive connections therein. We provide privacy with bounded Laplace noise, which improves accuracy relative to conventional unbounded noise. The private algebraic connectivity values are analytically shown to provide accurate estimates of consensus convergence rates, as well as accurate bounds on the diameter of a graph and the mean distance between its nodes. Simulation results confirm the utility of private algebraic connectivity in these contexts.
2022-12-01
Torres-Figueroa, Luis, Mönich, Ullrich J., Voichtleitner, Johannes, Frank, Anna, Andrei, Vlad-Costin, Wiese, Moritz, Boche, Holger.  2021.  Experimental Evaluation of a Modular Coding Scheme for Physical Layer Security. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
In this paper we use a seeded modular coding scheme for implementing physical layer security in a wiretap scenario. This modular scheme consists of a traditional coding layer and a security layer. For the traditional coding layer, we use a polar code. We evaluate the performance of the seeded modular coding scheme in an experimental setup with software defined radios and compare these results to simulation results. In order to assess the secrecy level of the scheme, we employ the distinguishing security metric. In our experiments, we compare the distinguishing error rate for different seeds and block lengths.
2022-10-16
Chang, Zhan-Lun, Lee, Chun-Yen, Lin, Chia-Hung, Wang, Chih-Yu, Wei, Hung-Yu.  2021.  Game-Theoretic Intrusion Prevention System Deployment for Mobile Edge Computing. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
The network attack such as Distributed Denial-of-Service (DDoS) attack could be critical to latency-critical systems such as Mobile Edge Computing (MEC) as such attacks significantly increase the response delay of the victim service. Intrusion prevention system (IPS) is a promising solution to defend against such attacks, but there will be a trade-off between IPS deployment and application resource reservation as the deployment of IPS will reduce the number of computation resources for MEC applications. In this paper, we proposed a game-theoretic framework to study the joint computation resource allocation and IPS deployment in the MEC architecture. We study the pricing strategy of the MEC platform operator and purchase strategy of the application service provider, given the expected attack strength and end user demands. The best responses of both MPO and ASPs are derived theoretically to identify the Stackelberg equilibrium. The simulation results confirm that the proposed solutions significantly increase the social welfare of the system.
2022-07-01
Chen, Lei.  2021.  Layered Security Multicast Algorithm based on Security Energy Efficiency Maximization in SCMA Networks. 2021 7th International Conference on Computer and Communications (ICCC). :2033–2037.
This paper studies the hierarchical secure multicast algorithm in sparse code multiple access (SCMA) networks, its network security capacity is no longer limited by the users with the worst channel quality in multicast group. Firstly, we propose a network security energy efficiency (SEE) maximization problem. Secondly, in order to reduce the computational complexity, we propose a suboptimal algorithm (SA), which separates the codebook assignment with artificial noise from the power allocation with artificial noise. To further decrease the complexity of Lagrange method, a power allocation algorithm with increased fixed power is introduced. Finally, simulation results show that the network performance of the proposed algorithm in SCMA network is significantly better than that in orthogonal frequency division multiple access (OFDMA) network.
2022-08-03
Gao, Hongxia, Yu, Zhenhua, Cong, Xuya, Wang, Jing.  2021.  Trustworthiness Evaluation of Smart Grids Using GSPN. 2021 IEEE International Conference on Networking, Sensing and Control (ICNSC). 1:1—7.
Smart grids are one of the most important applications of cyber-physical systems. They intelligently transmit energy to customers by information technology, and have replaced the traditional power grid and are widely used. However, smart grids are vulnerable to cyber-attacks. Once attacked, it will cause great losses and lose the trust of customers. Therefore, it is important to evaluate the trustworthiness of smart grids. In order to evaluate the trustworthiness of smart grids, this paper uses a generalized stochastic Petri net (GSPN) to model smart grids. Considering various security threats that smart grids may face, we propose a general GSPN model for smart grids, which evaluates trustworthiness from three metrics of reliability, availability, and integrity by analyzing steady-state and transient probabilities. Finally, we obtain the value of system trustworthiness and simulation results show that the feasibility and effectiveness of our model for smart grids trustworthiness.
2022-02-24
Kroeger, Trevor, Cheng, Wei, Guilley, Sylvain, Danger, Jean-Luc, Karimi, Nazhmeh.  2021.  Making Obfuscated PUFs Secure Against Power Side-Channel Based Modeling Attacks. 2021 Design, Automation Test in Europe Conference Exhibition (DATE). :1000–1005.
To enhance the security of digital circuits, there is often a desire to dynamically generate, rather than statically store, random values used for identification and authentication purposes. Physically Unclonable Functions (PUFs) provide the means to realize this feature in an efficient and reliable way by utilizing commonly overlooked process variations that unintentionally occur during the manufacturing of integrated circuits (ICs) due to the imperfection of fabrication process. When given a challenge, PUFs produce a unique response. However, PUFs have been found to be vulnerable to modeling attacks where by using a set of collected challenge response pairs (CRPs) and training a machine learning model, the response can be predicted for unseen challenges. To combat this vulnerability, researchers have proposed techniques such as Challenge Obfuscation. However, as shown in this paper, this technique can be compromised via modeling the PUF's power side-channel. We first show the vulnerability of a state-of-the-art Challenge Obfuscated PUF (CO-PUF) against power analysis attacks by presenting our attack results on the targeted CO-PUF. Then we propose two countermeasures, as well as their hybrid version, that when applied to the CO-PUFs make them resilient against power side-channel based modeling attacks. We also provide some insights on the proper design metrics required to be taken when implementing these mitigations. Our simulation results show the high success of our attack in compromising the original Challenge Obfuscated PUFs (success rate textgreater 98%) as well as the significant improvement on resilience of the obfuscated PUFs against power side-channel based modeling when equipped with our countermeasures.
2022-03-23
Karimi, A., Ahmadi, A., Shahbazi, Z., Shafiee, Q., Bevrani, H..  2021.  A Resilient Control Method Against False Data Injection Attack in DC Microgrids. 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA). :1—6.

The expression of cyber-attacks on communication links in smart grids has emerged recently. In microgrids, cooperation between agents through communication links is required, thus, microgrids can be considered as cyber-physical-systems and they are vulnerable to cyber-attack threats. Cyber-attacks can cause damages in control systems, therefore, the resilient control methods are necessary. In this paper, a resilient control approach against false data injection attack is proposed for secondary control of DC microgrids. In the proposed framework, a PI controller with an adjustable gain is utilized to eliminate the injected false data. The proposed control method is employed for both sensor and link attacks. Convergence analysis of the measurement sensors and the secondary control objectives under the studied control method is performed. Finally, a DC microgrid with four units is built in Matlab/Simulink environment to verify the proposed approach.

Luo, Baiting, Liu, Xiangguo, Zhu, Qi.  2021.  Credibility Enhanced Temporal Graph Convolutional Network Based Sybil Attack Detection On Edge Computing Servers. 2021 IEEE Intelligent Vehicles Symposium (IV). :524—531.
The emerging vehicular edge computing (VEC) technology has the potential to bring revolutionary development to vehicular ad hoc network (VANET). However, the edge computing servers (ECSs) are subjected to a variety of security threats. One of the most dangerous types of security attacks is the Sybil attack, which can create fabricated virtual vehicles (called Sybil vehicles) to significantly overload ECSs' limited computation resources and thus disrupt legitimate vehicles' edge computing applications. In this paper, we present a novel Sybil attack detection system on ECSs that is based on the design of a credibility enhanced temporal graph convolutional network. Our approach can identify the malicious vehicles in a dynamic traffic environment while preserving the legitimate vehicles' privacy, particularly their local position information. We evaluate our proposed approach in the SUMO simulator. The results demonstrate that our proposed detection system can accurately identify most Sybil vehicles while maintaining a low error rate.
2021-12-20
NING, Baifeng, Xiao, Liang.  2021.  Defense Against Advanced Persistent Threats in Smart Grids: A Reinforcement Learning Approach. 2021 40th Chinese Control Conference (CCC). :8598–8603.
In smart girds, supervisory control and data acquisition (SCADA) systems have to protect data from advanced persistent threats (APTs), which exploit vulnerabilities of the power infrastructures to launch stealthy and targeted attacks. In this paper, we propose a reinforcement learning-based APT defense scheme for the control center to choose the detection interval and the number of Central Processing Units (CPUs) allocated to the data concentrators based on the data priority, the size of the collected meter data, the history detection delay, the previous number of allocated CPUs, and the size of the labeled compromised meter data without the knowledge of the attack interval and attack CPU allocation model. The proposed scheme combines deep learning and policy-gradient based actor-critic algorithm to accelerate the optimization speed at the control center, where an actor network uses the softmax distribution to choose the APT defense policy and the critic network updates the actor network weights to improve the computational performance. The advantage function is applied to reduce the variance of the policy gradient. Simulation results show that our proposed scheme has a performance gain over the benchmarks in terms of the detection delay, data protection level, and utility.
2022-05-05
Xue, Nan, Wu, Xiaofan, Gumussoy, Suat, Muenz, Ulrich, Mesanovic, Amer, Dong, Zerui, Bharati, Guna, Chakraborty, Sudipta, Electric, Hawaiian.  2021.  Dynamic Security Optimization for N-1 Secure Operation of Power Systems with 100% Non-Synchronous Generation: First experiences from Hawai'i Island. 2021 IEEE Power Energy Society General Meeting (PESGM). :1—5.

This paper presents some of our first experiences and findings in the ARPA-E project ReNew100, which is to develop an operator support system to enable stable operation of power system with 100% non-synchronous (NS) generation. The key to 100% NS system, as found in many recent studies, is to establish the grid frequency reference using grid-forming (GFM) inverters. In this paper, we demonstrate in Electro-Magnetic-Transient (EMT) simulations, based on Hawai'i big island system with 100% NS capacity, that a system can be operated stably with the help of GFM inverters and appropriate controller parameters for the inverters. The dynamic security optimization (DSO) is introduced for optimizing the inverter control parameters to improve stability of the system towards N-1 contingencies. DSO is verified for five critical N-1 contingencies of big island system identified by Hawaiian Electric. The simulation results show significant stability improvement from DSO. The results in this paper share some insight, and provide a promising solution for operating grid in general with high penetration or 100% of NS generation.

2022-01-31
Zulfa, Mulki Indana, Hartanto, Rudy, Permanasari, Adhistya Erna.  2021.  Performance Comparison of Swarm Intelligence Algorithms for Web Caching Strategy. 2021 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT). :45—51.
Web caching is one strategy that can be used to speed up response times by storing frequently accessed data in the cache server. Given the cache server limited capacity, it is necessary to determine the priority of cached data that can enter the cache server. This study simulated cached data prioritization based on an objective function as a characteristic of problem-solving using an optimization approach. The objective function of web caching is formulated based on the variable data size, count access, and frequency-time access. Then we use the knapsack problem method to find the optimal solution. The Simulations run three swarm intelligence algorithms Ant Colony Optimization (ACO), Genetic Algorithm (GA), and Binary Particle Swarm Optimization (BPSO), divided into several scenarios. The simulation results show that the GA algorithm relatively stable and fast to convergence. The ACO algorithm has the advantage of a non-random initial solution but has followed the pheromone trail. The BPSO algorithm is the fastest, but the resulting solution quality is not as good as ACO and GA.
2021-12-20
Yang, Wen, Xue, Hong, Hu, Shenglin, Liang, Hongjing.  2021.  Command Filter-Based Adaptive Finite-Time Prescribed Performance Control for Uncertain Nonlinear Systems with Fuzzy Dead-Zone Input. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :555–560.
This paper is concerned with the problem of adaptive finite-time prescribed performance control for a category of uncertain nonlinear systems subject to fuzzy dead-zone input. Via combining the technologies of command filter and backstepping control, the ``singularity'' and the ``explosion of complexity'' issues within controller design procedure are avoided. Moreover, by designing a state observer and utilizing the center-of-gravity theorem, the unmeasured states of system are estimated and the fuzzy issue result from fuzzy dead-zone input is disposed, respectively. Meanwhile, a finite-time fuzzy controller is constructed via combining with finite-time stability criterion, which guarantees all the signals in closed-loop system are convergent and the trajectory of tracking error also strictly evolves within a predefined range in finite time. At last, some simulation results confirm the viability of presented theoretical results.
2022-05-10
Ben, Yanglin, Chen, Ming, Cao, Binghao, Yang, Zhaohui, Li, Zhiyang, Cang, Yihan, Xu, Zheng.  2021.  On Secrecy Sum-Rate of Artificial-Noise-Aided Multi-user Visible Light Communication Systems. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
Recently, the physical layer security (PLS) is becoming an important research area for visible light communication (VLC) systems. In this paper, the secrecy rate performance is investigated for an indoor multi-user visible light communication (VLC) system using artificial noise (AN). In the considered model, all users simultaneously communicate with the legitimate receiver under wiretap channels. The legitimate receiver uses the minimum mean squared error (MMSE) equalizer to detect the received signals. Both lower bound and upper bound of the secrecy rate are obtained for the case that users' signals are uniformly distributed. Simulation results verify the theoretical findings and show the system secrecy rate performance for various positions of illegal eavesdropper.
Qian, Lei, Chi, Xuefen, Zhao, Linlin, Chaaban, Anas.  2021.  Secure Visible Light Communications via Intelligent Reflecting Surfaces. ICC 2021 - IEEE International Conference on Communications. :1–6.
Intelligent reflecting surfaces (IRS) can improve the physical layer security (PLS) by providing a controllable wireless environment. In this paper, we propose a novel PLS technique with the help of IRS implemented by an intelligent mirror array for the visible light communication (VLC) system. First, for the IRS aided VLC system containing an access point (AP), a legitimate user and an eavesdropper, the IRS channel gain and a lower bound of the achievable secrecy rate are derived. Further, to enhance the IRS channel gain of the legitimate user while restricting the IRS channel gain of the eavesdropper, we formulate an achievable secrecy rate maximization problem for the proposed IRS-aided PLS technique to find the optimal orientations of mirrors. Since the sensitivity of mirrors’ orientations on the IRS channel gain makes the optimization problem hard to solve, we transform the original problem into a reflected spot position optimization problem and solve it by a particle swarm optimization (PSO) algorithm. Our simulation results show that secrecy performance can be significantly improved by adding an IRS in a VLC system.
2022-04-19
Mu, Jing, Jia, Xia.  2021.  Simulation and Analysis of the Influence of Artificial Interference Signal Style on Wireless Security System Performance. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:2106–2109.
Aimming at the severe security threat faced by information transmission in wireless communication, the artificial interference in physical layer security technology was considered, and the influence of artificial interference signal style on system information transmission security was analyzed by simulation, which provided technical accumulation for the design of wireless security transmission system based on artificial interference.
2022-03-23
Roy, Sohini, Sen, Arunabha.  2021.  Identification and Mitigation of False Data Injection using Multi State Implicative Interdependency Model (MSIIM) for Smart Grid. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.

Smart grid monitoring, automation and control will completely rely on PMU based sensor data soon. Accordingly, a high throughput, low latency Information and Communication Technology (ICT) infrastructure should be opted in this regard. Due to the low cost, low power profile, dynamic nature, improved accuracy and scalability, wireless sensor networks (WSNs) can be a good choice. Yet, the efficiency of a WSN depends a lot on the network design and the routing technique. In this paper a new design of the ICT network for smart grid using WSN is proposed. In order to understand the interactions between different entities, detect their operational levels, design the routing scheme and identify false data injection by particular ICT entities, a new model of interdependency called the Multi State Implicative Interdependency Model (MSIIM) is proposed in this paper, which is an updated version of the Modified Implicative Interdependency Model (MIIM) [1]. MSIIM considers the data dependency and operational accuracy of entities together with structural and functional dependencies between them. A multi-path secure routing technique is also proposed in this paper which relies on the MSIIM model for its functioning. Simulation results prove that MSIIM based False Data Injection (FDI) detection and mitigation works better and faster than existing methods.

2021-12-20
Wang, Libin, Wang, Huanqing, Liu, Peter Xiaoping.  2021.  Observer-Based Fuzzy Adaptive Command Filtering Finite-Time Control of Stochastic Nonlinear Systems. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :1–6.
The output feedback problem of finite-time command filtering for nonlinear systems with random disturbance is addressed in this paper. This is the first time that command filtering and output feedback are integrated so that a nonlinear system with random disturbance converge rapidly in finite time. The uncertain functions and unmeasured states are estimated by the fuzzy logic system (FLS) and nonlinear state observer, respectively. Based on the adaptive framework, command filtering technology is applied to mitigate the problem of ``term explosion'' inherent in traditional methods, and error compensation mechanism is considered to improve the control performance of the system. The developed output feedback controller ensures the boundedness of all signals in the stochastic system within a finite time, and the convergence residual can converge to a small region. The validity of this scheme is well verified in a numerical example.
Yang, Yuhan, Zhou, Yong, Wang, Ting, Shi, Yuanming.  2021.  Reconfigurable Intelligent Surface Assisted Federated Learning with Privacy Guarantee. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
In this paper, we consider a wireless federated learning (FL) system concerning differential privacy (DP) guarantee, where multiple edge devices collaboratively train a shared model under the coordination of a central base station (BS) through over-the-air computation (AirComp). However, due to the heterogeneity of wireless links, it is difficult to achieve the optimal trade-off between model privacy and accuracy during the FL model aggregation. To address this issue, we propose to utilize the reconfigurable intelligent surface (RIS) technology to mitigate the communication bottleneck in FL by reconfiguring the wireless propagation environment. Specifically, we aim to minimize the model optimality gap while strictly meeting the DP and transmit power constraints. This is achieved by jointly optimizing the device transmit power, artificial noise, and phase shifts at RIS, followed by developing a two-step alternating minimization framework. Simulation results will demonstrate that the proposed RIS-assisted FL model achieves a better trade-off between accuracy and privacy than the benchmarks.
2022-05-03
Xu, Jun, Zhu, Pengcheng, Li, Jiamin, You, Xiaohu.  2021.  Secure Computation Offloading for Multi-user Multi-server MEC-enabled IoT. ICC 2021 - IEEE International Conference on Communications. :1—6.

This paper studies the secure computation offloading for multi-user multi-server mobile edge computing (MEC)-enabled internet of things (IoT). A novel jamming signal scheme is designed to interfere with the decoding process at the Eve, but not impair the uplink task offloading from users to APs. Considering offloading latency and secrecy constraints, this paper studies the joint optimization of communication and computation resource allocation, as well as partial offloading ratio to maximize the total secrecy offloading data (TSOD) during the whole offloading process. The considered problem is nonconvex, and we resort to block coordinate descent (BCD) method to decompose it into three subproblems. An efficient iterative algorithm is proposed to achieve a locally optimal solution to power allocation subproblem. Then the optimal computation resource allocation and offloading ratio are derived in closed forms. Simulation results demonstrate that the proposed algorithm converges fast and achieves higher TSOD than some heuristics.

2022-02-08
Arsalaan, Ameer Shakayb, Nguyen, Hung, Fida, Mahrukh.  2021.  Impact of Bushfire Dynamics on the Performance of MANETs. 2021 16th Annual Conference on Wireless On-demand Network Systems and Services Conference (WONS). :1–4.
In emergency situations like recent Australian bushfires, it is crucial for civilians and firefighters to receive critical information such as escape routes and safe sheltering points with guarantees on information quality attributes. Mobile Ad-hoc Networks (MANETs) can provide communications in bushfire when fixed infrastructure is destroyed and not available. Current MANET solutions, however, are mostly tested under static bushfire scenario. In this work, we investigate the impact of a realistic dynamic bushfire in a dry eucalypt forest with a shrubby understory, on the performance of data delivery solutions in a MANET. Simulation results show a significant degradation in the performance of state-of-the-art MANET quality of information solution. Other than frequent source handovers and reduced user usability, packet arrival latency increases by more than double in the 1st quartile with a median drop of 74.5 % in the overall packet delivery ratio. It is therefore crucial for MANET solutions to be thoroughly evaluated under realistic dynamic bushfire scenarios.
2022-03-08
Xiaoqian, Xiong.  2021.  A Sensor Fault Diagnosis Algorithm for UAV Based on Neural Network. 2021 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :260–265.
To improve the security and reliability of the system in case of sensor failure, a fault diagnosis algorithm based on neural network is proposed to locate the fault quickly and reconstruct the control system in this paper. Firstly, the typical airborne sensors are introduced and their common failure modes are analyzed. Then, a new method of complex feature extraction using wavelet packet is put forward to extract the fault characteristics of UAV sensors. Finally, the observer method based on BP neural network is adopted to train and acquire data offline, and to detect and process single or multiple sensor faults online. Matlab simulation results show that the algorithm has good diagnostic accuracy and strong generalization ability, which also has certain practicability in engineering.
2022-02-04
Liu, Zepeng, Xiao, Shiwu, Dong, Huanyu.  2021.  Identification of Transformer Magnetizing Inrush Current Based on Empirical Mode Decomposition. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–6.
Aiming at the fact that the existing feature quantities cannot well identify the magnetizing inrush current during remanence and bias and the huge number of feature quantities, a new identification method using empirical mode decomposition energy index and artificial intelligence algorithm is proposed in 'this paper. Decomposition and denoising are realized through empirical mode decomposition, and then the corresponding energy index is obtained for the waveform of each inherent modal component and simplified by the mean impact value method. Finally, the accuracy of prediction using artificial intelligence algorithm is close to 100%. This reflects the practicality of the method proposed in 'this article.