Biblio

Filters: Author is Xu, Jun  [Clear All Filters]
2022-05-03
Xu, Jun, Zhu, Pengcheng, Li, Jiamin, You, Xiaohu.  2021.  Secure Computation Offloading for Multi-user Multi-server MEC-enabled IoT. ICC 2021 - IEEE International Conference on Communications. :1—6.

This paper studies the secure computation offloading for multi-user multi-server mobile edge computing (MEC)-enabled internet of things (IoT). A novel jamming signal scheme is designed to interfere with the decoding process at the Eve, but not impair the uplink task offloading from users to APs. Considering offloading latency and secrecy constraints, this paper studies the joint optimization of communication and computation resource allocation, as well as partial offloading ratio to maximize the total secrecy offloading data (TSOD) during the whole offloading process. The considered problem is nonconvex, and we resort to block coordinate descent (BCD) method to decompose it into three subproblems. An efficient iterative algorithm is proposed to achieve a locally optimal solution to power allocation subproblem. Then the optimal computation resource allocation and offloading ratio are derived in closed forms. Simulation results demonstrate that the proposed algorithm converges fast and achieves higher TSOD than some heuristics.

2019-12-16
Guo, Wenbo, Mu, Dongliang, Xu, Jun, Su, Purui, Wang, Gang, Xing, Xinyu.  2018.  LEMNA: Explaining Deep Learning Based Security Applications. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :364–379.
While deep learning has shown a great potential in various domains, the lack of transparency has limited its application in security or safety-critical areas. Existing research has attempted to develop explanation techniques to provide interpretable explanations for each classification decision. Unfortunately, current methods are optimized for non-security tasks ( e.g., image analysis). Their key assumptions are often violated in security applications, leading to a poor explanation fidelity. In this paper, we propose LEMNA, a high-fidelity explanation method dedicated for security applications. Given an input data sample, LEMNA generates a small set of interpretable features to explain how the input sample is classified. The core idea is to approximate a local area of the complex deep learning decision boundary using a simple interpretable model. The local interpretable model is specially designed to (1) handle feature dependency to better work with security applications ( e.g., binary code analysis); and (2) handle nonlinear local boundaries to boost explanation fidelity. We evaluate our system using two popular deep learning applications in security (a malware classifier, and a function start detector for binary reverse-engineering). Extensive evaluations show that LEMNA's explanation has a much higher fidelity level compared to existing methods. In addition, we demonstrate practical use cases of LEMNA to help machine learning developers to validate model behavior, troubleshoot classification errors, and automatically patch the errors of the target models.
2017-12-12
Huang, Jian, Xu, Jun, Xing, Xinyu, Liu, Peng, Qureshi, Moinuddin K..  2017.  FlashGuard: Leveraging Intrinsic Flash Properties to Defend Against Encryption Ransomware. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2231–2244.

Encryption ransomware is a malicious software that stealthily encrypts user files and demands a ransom to provide access to these files. Several prior studies have developed systems to detect ransomware by monitoring the activities that typically occur during a ransomware attack. Unfortunately, by the time the ransomware is detected, some files already undergo encryption and the user is still required to pay a ransom to access those files. Furthermore, ransomware variants can obtain kernel privilege, which allows them to terminate software-based defense systems, such as anti-virus. While periodic backups have been explored as a means to mitigate ransomware, such backups incur storage overheads and are still vulnerable as ransomware can obtain kernel privilege to stop or destroy backups. Ideally, we would like to defend against ransomware without relying on software-based solutions and without incurring the storage overheads of backups. To that end, this paper proposes FlashGuard, a ransomware tolerant Solid State Drive (SSD) which has a firmware-level recovery system that allows quick and effective recovery from encryption ransomware without relying on explicit backups. FlashGuard leverages the observation that the existing SSD already performs out-of-place writes in order to mitigate the long erase latency of flash memories. Therefore, when a page is updated or deleted, the older copy of that page is anyway present in the SSD. FlashGuard slightly modifies the garbage collection mechanism of the SSD to retain the copies of the data encrypted by ransomware and ensure effective data recovery. Our experiments with 1,447 manually labeled ransomware samples show that FlashGuard can efficiently restore files encrypted by ransomware. In addition, we demonstrate that FlashGuard has a negligible impact on the performance and lifetime of the SSD.

2017-08-22
Xu, Jun, Mu, Dongliang, Chen, Ping, Xing, Xinyu, Wang, Pei, Liu, Peng.  2016.  CREDAL: Towards Locating a Memory Corruption Vulnerability with Your Core Dump. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :529–540.

After a program has crashed and terminated abnormally, it typically leaves behind a snapshot of its crashing state in the form of a core dump. While a core dump carries a large amount of information, which has long been used for software debugging, it barely serves as informative debugging aids in locating software faults, particularly memory corruption vulnerabilities. A memory corruption vulnerability is a special type of software faults that an attacker can exploit to manipulate the content at a certain memory. As such, a core dump may contain a certain amount of corrupted data, which increases the difficulty in identifying useful debugging information (e.g. , a crash point and stack traces). Without a proper mechanism to deal with this problem, a core dump can be practically useless for software failure diagnosis. In this work, we develop CREDAL, an automatic tool that employs the source code of a crashing program to enhance core dump analysis and turns a core dump to an informative aid in tracking down memory corruption vulnerabilities. Specifically, CREDAL systematically analyzes a core dump potentially corrupted and identifies the crash point and stack frames. For a core dump carrying corrupted data, it goes beyond the crash point and stack trace. In particular, CREDAL further pinpoints the variables holding corrupted data using the source code of the crashing program along with the stack frames. To assist software developers (or security analysts) in tracking down a memory corruption vulnerability, CREDAL also performs analysis and highlights the code fragments corresponding to data corruption. To demonstrate the utility of CREDAL, we use it to analyze 80 crashes corresponding to 73 memory corruption vulnerabilities archived in Offensive Security Exploit Database. We show that, CREDAL can accurately pinpoint the crash point and (fully or partially) restore a stack trace even though a crashing program stack carries corrupted data. In addition, we demonstrate CREDAL can potentially reduce the manual effort of finding the code fragment that is likely to contain memory corruption vulnerabilities.

2017-10-27
Xu, Peng, Xu, Jun, Wang, Wei, Jin, Hai, Susilo, Willy, Zou, Deqing.  2016.  Generally Hybrid Proxy Re-Encryption: A Secure Data Sharing Among Cryptographic Clouds. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :913–918.

Proxy Re-Encryption (PRE) is a favorable primitive to realize a cryptographic cloud with secure and flexible data sharing mechanism. A number of PRE schemes with versatile capabilities have been proposed for different applications. The secure data sharing can be internally achieved in each PRE scheme. But no previous work can guarantee the secure data sharing among different PRE schemes in a general manner. Moreover, it is challenging to solve this problem due to huge differences among the existing PRE schemes in their algebraic systems and public-key types. To solve this problem more generally, this paper uniforms the definitions of the existing PRE and Public Key Encryption (PKE) schemes, and further uniforms their security definitions. Then taking any uniformly defined PRE scheme and any uniformly defined PKE scheme as two building blocks, this paper constructs a Generally Hybrid Proxy Re-Encryption (GHPRE) scheme with the idea of temporary public and private keys to achieve secure data sharing between these two underlying schemes. Since PKE is a more general definition than PRE, the proposed GHPRE scheme also is workable between any two PRE schemes. Moreover, the proposed GHPRE scheme can be transparently deployed even if the underlying PRE schemes are implementing.