Biblio

Found 2356 results

Filters: Keyword is privacy  [Clear All Filters]
2023-04-28
'Ammar, Muhammad Amirul, Purnamasari, Rita, Budiman, Gelar.  2022.  Compressive Sampling on Weather Radar Application via Discrete Cosine Transform (DCT). 2022 IEEE Symposium on Future Telecommunication Technologies (SOFTT). :83–89.
A weather radar is expected to provide information about weather conditions in real time and valid. To obtain these results, weather radar takes a lot of data samples, so a large amount of data is obtained. Therefore, the weather radar equipment must provide bandwidth for a large capacity for transmission and storage media. To reduce the burden of data volume by performing compression techniques at the time of data acquisition. Compressive Sampling (CS) is a new data acquisition method that allows the sampling and compression processes to be carried out simultaneously to speed up computing time, reduce bandwidth when passed on transmission media, and save storage media. There are three stages in the CS method, namely: sparsity transformation using the Discrete Cosine Transform (DCT) algorithm, sampling using a measurement matrix, and reconstruction using the Orthogonal Matching Pursuit (OMP) algorithm. The sparsity transformation aims to convert the representation of the radar signal into a sparse form. Sampling is used to extract important information from the radar signal, and reconstruction is used to get the radar signal back. The data used in this study is the real data of the IDRA beat signal. Based on the CS simulation that has been done, the best PSNR and RMSE values are obtained when using a CR value of two times, while the shortest computation time is obtained when using a CR value of 32 times. CS simulation in a sector via DCT using the CR value two times produces a PSNR value of 20.838 dB and an RMSE value of 0.091. CS simulation in a sector via DCT using the CR value 32 times requires a computation time of 10.574 seconds.
Barac, Petar, Bajor, Matthew, Kinget, Peter R..  2022.  Compressive-Sampling Spectrum Scanning with a Beamforming Receiver for Rapid, Directional, Wideband Signal Detection. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–5.
Communication systems across a variety of applications are increasingly using the angular domain to improve spectrum management. They require new sensing architectures to perform energy-efficient measurements of the electromagnetic environment that can be deployed in a variety of use cases. This paper presents the Directional Spectrum Sensor (DSS), a compressive sampling (CS) based analog-to-information converter (CS-AIC) that performs spectrum scanning in a focused beam. The DSS offers increased spectrum sensing sensitivity and interferer tolerance compared to omnidirectional sensors. The DSS implementation uses a multi-antenna beamforming architecture with local oscillators that are modulated with pseudo random waveforms to obtain CS measurements. The overall operation, limitations, and the influence of wideband angular effects on the spectrum scanning performance are discussed. Measurements on an experimental prototype are presented and highlight improvements over single antenna, omnidirectional sensing systems.
ISSN: 2577-2465
2023-08-24
Mishra, Shilpi, Arora, Himanshu, Parakh, Garvit, Khandelwal, Jayesh.  2022.  Contribution of Blockchain in Development of Metaverse. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :845–850.
Metaverse is becoming the new standard for social networks and 3D virtual worlds when Facebook officially rebranded to Metaverse in October 2021. Many relevant technologies are used in the metaverse to offer 3D immersive and customized experiences at the user’s fingertips. Despite the fact that the metaverse receives a lot of attention and advantages, one of the most pressing concerns for its users is the safety of their digital material and data. As a result of its decentralization, immutability, and transparency, blockchain is a possible alternative. Our goal is to conduct a comprehensive assessment of blockchain systems in the metaverse to properly appreciate its function in the metaverse. To begin with, the paper introduces blockchain and the metaverse and explains why it’s necessary for the metaverse to adopt blockchain technology. Aside from these technological considerations, this article focuses on how blockchain-based approaches for the metaverse may be used from a privacy and security standpoint. There are several technological challenegs that need to be addressed for making the metaverse a reality. The influence of blockchain on important key technologies with in metaverse, such as Artifical Intelligence, big data and the Internet-of-Things (IoT) is also examined. Several prominent initiatives are also shown to demonstrate the importance of blockchain technology in the development of metaverse apps and services. There are many possible possibilities for future development and research in the application of blockchain technology in the metaverse.
2023-02-28
Ahmed, Sabrina, Subah, Zareen, Ali, Mohammed Zamshed.  2022.  Cryptographic Data Security for IoT Healthcare in 5G and Beyond Networks. 2022 IEEE Sensors. :1—4.
While 5G Edge Computing along with IoT technology has transformed the future of healthcare data transmission, it presents security vulnerabilities and risks when transmitting patients' confidential information. Currently, there are very few reliable security solutions available for healthcare data that routes through SDN routers in 5G Edge Computing. These solutions do not provide cryptographic security from IoT sensor devices. In this paper, we studied how 5G edge computing integrated with IoT network helps healthcare data transmission for remote medical treatment, explored security risks associated with unsecured data transmission, and finally proposed a cryptographic end-to-end security solution initiated at IoT sensor devices and routed through SDN routers. Our proposed solution with cryptographic security initiated at IoT sensor goes through SDN control plane and data plane in 5G edge computing and provides an end-to-end secured communication from IoT device to doctor's office. A prototype built with two-layer encrypted communication has been lab tested with promising results. This analysis will help future security implementation for eHealth in 5G and beyond networks.
2023-06-09
Devliyal, Swati, Sharma, Sachin, Goyal, Himanshu Rai.  2022.  Cyber Physical System Architectures for Pharmaceutical Care Services: Challenges and Future Trends. 2022 IEEE International Conference on Current Development in Engineering and Technology (CCET). :1—6.
The healthcare industry is confronted with a slew of significant challenges, including stringent regulations, privacy concerns, and rapidly rising costs. Many leaders and healthcare professionals are looking to new technology and informatics to expand more intelligent forms of healthcare delivery. Numerous technologies have advanced during the last few decades. Over the past few decades, pharmacy has changed and grown, concentrating less on drugs and more on patients. Pharmaceutical services improve healthcare's affordability and security. The primary invention was a cyber-infrastructure made up of smart gadgets that are connected to and communicate with one another. These cyber infrastructures have a number of problems, including privacy, trust, and security. These gadgets create cyber-physical systems for pharmaceutical care services in p-health. In the present period, cyber-physical systems for pharmaceutical care services are dealing with a variety of important concerns and demanding conditions, i.e., problems and obstacles that need be overcome to create a trustworthy and effective medical system. This essay offers a thorough examination of CPS's architectural difficulties and emerging tendencies.
Wang, Shuangbao Paul, Arafin, Md Tanvir, Osuagwu, Onyema, Wandji, Ketchiozo.  2022.  Cyber Threat Analysis and Trustworthy Artificial Intelligence. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :86—90.
Cyber threats can cause severe damage to computing infrastructure and systems as well as data breaches that make sensitive data vulnerable to attackers and adversaries. It is therefore imperative to discover those threats and stop them before bad actors penetrating into the information systems.Threats hunting algorithms based on machine learning have shown great advantage over classical methods. Reinforcement learning models are getting more accurate for identifying not only signature-based but also behavior-based threats. Quantum mechanics brings a new dimension in improving classification speed with exponential advantage. The accuracy of the AI/ML algorithms could be affected by many factors, from algorithm, data, to prejudicial, or even intentional. As a result, AI/ML applications need to be non-biased and trustworthy.In this research, we developed a machine learning-based cyber threat detection and assessment tool. It uses two-stage (both unsupervised and supervised learning) analyzing method on 822,226 log data recorded from a web server on AWS cloud. The results show the algorithm has the ability to identify the threats with high confidence.
2023-08-24
Wei-Kocsis, Jin, Sabounchi, Moein, Yang, Baijian, Zhang, Tonglin.  2022.  Cybersecurity Education in the Age of Artificial Intelligence: A Novel Proactive and Collaborative Learning Paradigm. 2022 IEEE Frontiers in Education Conference (FIE). :1–5.
This Innovative Practice Work-in-Progress paper presents a virtual, proactive, and collaborative learning paradigm that can engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary AI-cybersecurity knowledge. While progress has been made to better understand the trustworthiness and security of artificial intelligence (AI) techniques, little has been done to translate this knowledge to education and training. There is a critical need to foster a qualified cybersecurity workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. To address this import issue, in our proposed learning paradigm, we leverage multidisciplinary expertise in cybersecurity, AI, and statistics to systematically investigate two cohesive research and education goals. First, we develop an immersive learning environment that motivates the students to explore AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects. Second, we design a proactive education paradigm with the use of hackathon activities based on game-based learning, lifelong learning, and social constructivism. The proposed paradigm will benefit a wide range of learners, especially underrepresented students. It will also help the general public understand the security implications of AI. In this paper, we describe our proposed learning paradigm and present our current progress of this ongoing research work. In the current stage, we focus on the first research and education goal and have been leveraging cost-effective Minecraft platform to develop an immersive learning environment where the learners are able to investigate the insights of the emerging AI/ML concepts by constructing related learning modules via interacting with tangible AI/ML building blocks.
ISSN: 2377-634X
Riedel, Paul, Riesner, Michael, Wendt, Karsten, Aßmann, Uwe.  2022.  Data-Driven Digital Twins in Surgery utilizing Augmented Reality and Machine Learning. 2022 IEEE International Conference on Communications Workshops (ICC Workshops). :580–585.
On the one hand, laparoscopic surgery as medical state-of-the-art method is minimal invasive, and thus less stressful for patients. On the other hand, laparoscopy implies higher demands on physicians, such as mental load or preparation time, hence appropriate technical support is essential for quality and suc-cess. Medical Digital Twins provide an integrated and virtual representation of patients' and organs' data, and thus a generic concept to make complex information accessible by surgeons. In this way, minimal invasive surgery could be improved significantly, but requires also a much more complex software system to achieve the various resulting requirements. The biggest challenges for these systems are the safe and precise mapping of the digital twin to reality, i.e. dealing with deformations, movement and distortions, as well as balance out the competing requirement for intuitive and immersive user access and security. The case study ARAILIS is presented as a proof in concept for such a system and provides a starting point for further research. Based on the insights delivered by this prototype, a vision for future Medical Digital Twins in surgery is derived and discussed.
ISSN: 2694-2941
2023-02-03
Hussainy, Abdelrahman S., Khalifa, Mahmoud A., Elsayed, Abdallah, Hussien, Amr, Razek, Mohammed Abdel.  2022.  Deep Learning Toward Preventing Web Attacks. 2022 5th International Conference on Computing and Informatics (ICCI). :280–285.
Cyberattacks are one of the most pressing issues of our time. The impact of cyberthreats can damage various sectors such as business, health care, and governments, so one of the best solutions to deal with these cyberattacks and reduce cybersecurity threats is using Deep Learning. In this paper, we have created an in-depth study model to detect SQL Injection Attacks and Cross-Site Script attacks. We focused on XSS on the Stored-XSS attack type because SQL and Stored-XSS have similar site management methods. The advantage of combining deep learning with cybersecurity in our system is to detect and prevent short-term attacks without human interaction, so our system can reduce and prevent web attacks. This post-training model achieved a more accurate result more than 99% after maintaining the learning level, and 99% of our test data is determined by this model if this input is normal or dangerous.
2023-06-09
Zhang, Yue, Nan, Xiaoya, Zhou, Jialing, Wang, Shuai.  2022.  Design of Differential Privacy Protection Algorithms for Cyber-Physical Systems. 2022 International Conference on Intelligent Systems and Computational Intelligence (ICISCI). :29—34.
A new privacy Laplace common recognition algorithm is designed to protect users’ privacy data in this paper. This algorithm disturbs state transitions and information generation functions using exponentially decaying Laplace noise to avoid attacks. The mean square consistency and privacy protection performance are further studied. Finally, the theoretical results obtained are verified by performing numerical simulations.
2023-09-18
Wang, Rui, Zheng, Jun, Shi, Zhiwei, Tan, Yu'an.  2022.  Detecting Malware Using Graph Embedding and DNN. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :28—31.
Nowadays, the popularity of intelligent terminals makes malwares more and more serious. Among the many features of application, the call graph can accurately express the behavior of the application. The rapid development of graph neural network in recent years provides a new solution for the malicious analysis of application using call graphs as features. However, there are still problems such as low accuracy. This paper established a large-scale data set containing more than 40,000 samples and selected the class call graph, which was extracted from the application, as the feature and used the graph embedding combined with the deep neural network to detect the malware. The experimental results show that the accuracy of the detection model proposed in this paper is 97.7%; the precision is 96.6%; the recall is 96.8%; the F1-score is 96.4%, which is better than the existing detection model based on Markov chain and graph embedding detection model.
Pranav, Putsa Rama Krishna, Verma, Sachin, Shenoy, Sahana, Saravanan, S..  2022.  Detection of Botnets in IoT Networks using Graph Theory and Machine Learning. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :590—597.
The Internet of things (IoT) is proving to be a boon in granting internet access to regularly used objects and devices. Sensors, programs, and other innovations interact and trade information with different gadgets and frameworks over the web. Even in modern times, IoT gadgets experience the ill effects of primary security threats, which expose them to many dangers and malware, one among them being IoT botnets. Botnets carry out attacks by serving as a vector and this has become one of the significant dangers on the Internet. These vectors act against associations and carry out cybercrimes. They are used to produce spam, DDOS attacks, click frauds, and steal confidential data. IoT gadgets bring various challenges unlike the common malware on PCs and Android devices as IoT gadgets have heterogeneous processor architecture. Numerous researches use static or dynamic analysis for detection and classification of botnets on IoT gadgets. Most researchers haven't addressed the multi-architecture issue and they use a lot of computing resources for analyzing. Therefore, this approach attempts to classify botnets in IoT by using PSI-Graphs which effectively addresses the problem of encryption in IoT botnet detection, tackles the multi-architecture problem, and reduces computation time. It proposes another methodology for describing and recognizing botnets utilizing graph-based Machine Learning techniques and Exploratory Data Analysis to analyze the data and identify how separable the data is to recognize bots at an earlier stage so that IoT devices can be prevented from being attacked.
2023-05-11
Saxena, Aditi, Arora, Akarshi, Saxena, Saumya, Kumar, Ashwni.  2022.  Detection of web attacks using machine learning based URL classification techniques. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1–13.
For a long time, online attacks were regarded to pose a severe threat to web - based applications, websites, and clients. It can bypass authentication methods, steal sensitive information from datasets and clients, and also gain ultimate authority of servers. A variety of ways for safeguarding online apps have been developed and used to deal the website risks. Based on the studies about the intersection of cybersecurity and machine learning, countermeasures for identifying typical web assaults have recently been presented (ML). In order to establish a better understanding on this essential topic, it is necessary to study ML methodologies, feature extraction techniques, evaluate datasets, and performance metrics utilised in a systematic manner. In this paper, we go through web security flaws like SQLi, XSS, malicious URLs, phishing attacks, path traversal, and CMDi in detail. We also go through the existing security methods for detecting these threats using machine learning approaches for URL classification. Finally, we discuss potential research opportunities for ML and DL-based techniques in this category, based on a thorough examination of existing solutions in the literature.
2023-04-28
Zhang, Zongyu, Zhou, Chengwei, Yan, Chenggang, Shi, Zhiguo.  2022.  Deterministic Ziv-Zakai Bound for Compressive Time Delay Estimation. 2022 IEEE Radar Conference (RadarConf22). :1–5.
Compressive radar receiver has attracted a lot of research interest due to its capability to keep balance between sub-Nyquist sampling and high resolution. In evaluating the performance of compressive time delay estimator, Cramer-Rao bound (CRB) has been commonly utilized for lower bounding the mean square error (MSE). However, behaving as a local bound, CRB is not tight in the a priori performance region. In this paper, we introduce the Ziv-Zakai bound (ZZB) methodology into compressive sensing framework, and derive a deterministic ZZB for compressive time delay estimators as a function of the compressive sensing kernel. By effectively incorporating the a priori information of the unknown time delay, the derived ZZB performs much tighter than CRB especially in the a priori performance region. Simulation results demonstrate that the derived ZZB outperforms the Bayesian CRB over a wide range of signal-to-noise ratio, where different types of a priori distribution of time delay are considered.
Mahind, Umesh, Karia, Deepak.  2022.  Development and Analysis of Sparse Spasmodic Sampling Techniques. 2022 International Conference on Edge Computing and Applications (ICECAA). :818–823.
The Compressive Sensing (CS) has wide range of applications in various domains. The sampling of sparse signal, which is periodic or aperiodic in nature, is still an out of focus topic. This paper proposes novel Sparse Spasmodic Sampling (SSS) techniques for different sparse signal in original domain. The SSS techniques are proposed to overcome the drawback of the existing CS sampling techniques, which can sample any sparse signal efficiently and also find location of non-zero components in signals. First, Sparse Spasmodic Sampling model-1 (SSS-1) which samples random points and also include non-zero components is proposed. Another sampling technique, Sparse Spasmodic Sampling model-2 (SSS-2) has the same working principle as model-1 with some advancements in design. It samples equi-distance points unlike SSS-1. It is demonstrated that, using any sampling technique, the signal is able to reconstruct with a reconstruction algorithm with a smaller number of measurements. Simulation results are provided to demonstrate the effectiveness of the proposed sampling techniques.
2023-06-30
Subramanian, Rishabh.  2022.  Differential Privacy Techniques for Healthcare Data. 2022 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). :95–100.
This paper analyzes techniques to enable differential privacy by adding Laplace noise to healthcare data. First, as healthcare data contain natural constraints for data to take only integral values, we show that drawing only integral values does not provide differential privacy. In contrast, rounding randomly drawn values to the nearest integer provides differential privacy. Second, when a variable is constructed using two other variables, noise must be added to only one of them. Third, if the constructed variable is a fraction, then noise must be added to its constituent private variables, and not to the fraction directly. Fourth, the accuracy of analytics following noise addition increases with the privacy budget, ϵ, and the variance of the independent variable. Finally, the accuracy of analytics following noise addition increases disproportionately with an increase in the privacy budget when the variance of the independent variable is greater. Using actual healthcare data, we provide evidence supporting the two predictions on the accuracy of data analytics. Crucially, to enable accuracy of data analytics with differential privacy, we derive a relationship to extract the slope parameter in the original dataset using the slope parameter in the noisy dataset.
Mimoto, Tomoaki, Hashimoto, Masayuki, Yokoyama, Hiroyuki, Nakamura, Toru, Isohara, Takamasa, Kojima, Ryosuke, Hasegawa, Aki, Okuno, Yasushi.  2022.  Differential Privacy under Incalculable Sensitivity. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :27–31.
Differential privacy mechanisms have been proposed to guarantee the privacy of individuals in various types of statistical information. When constructing a probabilistic mechanism to satisfy differential privacy, it is necessary to consider the impact of an arbitrary record on its statistics, i.e., sensitivity, but there are situations where sensitivity is difficult to derive. In this paper, we first summarize the situations in which it is difficult to derive sensitivity in general, and then propose a definition equivalent to the conventional definition of differential privacy to deal with them. This definition considers neighboring datasets as in the conventional definition. Therefore, known differential privacy mechanisms can be applied. Next, as an example of the difficulty in deriving sensitivity, we focus on the t-test, a basic tool in statistical analysis, and show that a concrete differential privacy mechanism can be constructed in practice. Our proposed definition can be treated in the same way as the conventional differential privacy definition, and can be applied to cases where it is difficult to derive sensitivity.
2023-09-20
Abdullah, Muhammed Amin, Yu, Yongbin, Cai, Jingye, Imrana, Yakubu, Tettey, Nartey Obed, Addo, Daniel, Sarpong, Kwabena, Agbley, Bless Lord Y., Appiah, Benjamin.  2022.  Disparity Analysis Between the Assembly and Byte Malware Samples with Deep Autoencoders. 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :1—4.
Malware attacks in the cyber world continue to increase despite the efforts of Malware analysts to combat this problem. Recently, Malware samples have been presented as binary sequences and assembly codes. However, most researchers focus only on the raw Malware sequence in their proposed solutions, ignoring that the assembly codes may contain important details that enable rapid Malware detection. In this work, we leveraged the capabilities of deep autoencoders to investigate the presence of feature disparities in the assembly and raw binary Malware samples. First, we treated the task as outliers to investigate whether the autoencoder would identify and justify features as samples from the same family. Second, we added noise to all samples and used Deep Autoencoder to reconstruct the original samples by denoising. Experiments with the Microsoft Malware dataset showed that the byte samples' features differed from the assembly code samples.
2023-06-30
Shi, Er-Mei, Liu, Jia-Xi, Ji, Yuan-Ming, Chang, Liang.  2022.  DP-BEGAN: A Generative Model of Differential Privacy Algorithm. 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI). :168–172.
In recent years, differential privacy has gradually become a standard definition in the field of data privacy protection. Differential privacy does not need to make assumptions about the prior knowledge of privacy adversaries, so it has a more stringent effect than existing privacy protection models and definitions. This good feature has been used by researchers to solve the in-depth learning problem restricted by the problem of privacy and security, making an important breakthrough, and promoting its further large-scale application. Combining differential privacy with BEGAN, we propose the DP-BEGAN framework. The differential privacy is realized by adding carefully designed noise to the gradient of Gan model training, so as to ensure that Gan can generate unlimited synthetic data that conforms to the statistical characteristics of source data and does not disclose privacy. At the same time, it is compared with the existing methods on public datasets. The results show that under a certain privacy budget, this method can generate higher quality privacy protection data more efficiently, which can be used in a variety of data analysis tasks. The privacy loss is independent of the amount of synthetic data, so it can be applied to large datasets.
2023-07-14
Narayanan, K. Lakshmi, Naresh, R..  2022.  A Effective Encryption and Different Integrity Schemes to Improve the Performance of Cloud Services. 2022 International Conference for Advancement in Technology (ICONAT). :1–5.
Recent modern era becomes a multi-user environment. It's hard to store and retrieve data in secure manner at the end user side is a hectic challenge. Difference of Cloud computing compare to Network Computing can be accessed from multiple company servers. Cloud computing makes the users and organization to opt their services. Due to effective growth of the Cloud Technology. Data security, Data Privacy key validation and tracing of user are severe concern. It is hard to trace malicious users who misuse the secrecy. To reduce the rate of misuse in secrecy user revocation is used. Audit Log helps in Maintaining the history of malicious user also helps in maintaining the data integrity in cloud. Cloud Monitoring Metrics helps in the evaluation survey study of different Metrics. In this paper we give an in depth survey about Back-end of cloud services their concerns and the importance of privacy in cloud, Privacy Mechanism in cloud, Ways to Improve the Privacy in cloud, Hazards, Cloud Computing Issues and Challenges we discuss the need of cryptography and a survey of existing cryptographic algorithms. We discuss about the auditing and its classifications with respect to comparative study. In this paper analyzed various encryption schemes and auditing schemes with several existing algorithms which help in the improvement of cloud services.
2023-09-20
Mantoro, Teddy, Fahriza, Muhammad Elky, Agni Catur Bhakti, Muhammad.  2022.  Effective of Obfuscated Android Malware Detection using Static Analysis. 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED). :1—5.
The effective security system improvement from malware attacks on the Android operating system should be updated and improved. Effective malware detection increases the level of data security and high protection for the users. Malicious software or malware typically finds a means to circumvent the security procedure, even when the user is unaware whether the application can act as malware. The effectiveness of obfuscated android malware detection is evaluated by collecting static analysis data from a data set. The experiment assesses the risk level of which malware dataset using the hash value of the malware and records malware behavior. A set of hash SHA256 malware samples has been obtained from an internet dataset and will be analyzed using static analysis to record malware behavior and evaluate which risk level of the malware. According to the results, most of the algorithms provide the same total score because of the multiple crime inside the malware application.
2023-07-13
Salman, Zainab, Alomary, Alauddin.  2022.  An Efficient Approach to Reduce the Encryption and Decryption Time Based on the Concept of Unique Values. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :535–540.
Data security has become the most important issue in every institution or company. With the existence of hackers, intruders, and third parties on the cloud, securing data has become more challenging. This paper uses a hybrid encryption method that is based on the Elliptic Curve Cryptography (ECC) and Fully Homomorphic Encryption (FHE). ECC is used as a lightweight encryption algorithm that can provide a good level of security. Besides, FHE is used to enable data computation on the encrypted data in the cloud. In this paper, the concept of unique values is combined with the hybrid encryption method. Using the concept of unique values contributes to decreasing the encryption and decryption time obviously. To evaluate the performance of the combined encryption method, the provided results are compared with the ones in the encryption method without using the concept of unique values. Experiments show that the combined encryption method can reduce the encryption time up to 43% and the decryption time up to 56%.
ISSN: 2770-7466
2023-07-12
Li, Fenghua, Chen, Cao, Guo, Yunchuan, Fang, Liang, Guo, Chao, Li, Zifu.  2022.  Efficiently Constructing Topology of Dynamic Networks. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :44—51.
Accurately constructing dynamic network topology is one of the core tasks to provide on-demand security services to the ubiquitous network. Existing schemes cannot accurately construct dynamic network topologies in time. In this paper, we propose a novel scheme to construct the ubiquitous network topology. Firstly, ubiquitous network nodes are divided into three categories: terminal node, sink node, and control node. On this basis, we propose two operation primitives (i.e., addition and subtraction) and three atomic operations (i.e., intersection, union, and fusion), and design a series of algorithms to describe the network change and construct the network topology. We further use our scheme to depict the specific time-varying network topologies, including Satellite Internet and Internet of things. It demonstrates that their communication and security protection modes can be efficiently and accurately constructed on our scheme. The simulation and theoretical analysis also prove that the efficiency of our scheme, and effectively support the orchestration of protection capabilities.
2023-03-03
Gunathilake, Nilupulee A., Al-Dubai, Ahmed, Buchanan, William J., Lo, Owen.  2022.  Electromagnetic Side-Channel Attack Resilience against PRESENT Lightweight Block Cipher. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :51–55.
Lightweight cryptography is a novel diversion from conventional cryptography that targets internet-of-things (IoT) platform due to resource constraints. In comparison, it offers smaller cryptographic primitives such as shorter key sizes, block sizes and lesser energy drainage. The main focus can be seen in algorithm developments in this emerging subject. Thus, verification is carried out based upon theoretical (mathematical) proofs mostly. Among the few available side-channel analysis studies found in literature, the highest percentage is taken by power attacks. PRESENT is a promising lightweight block cipher to be included in IoT devices in the near future. Thus, the emphasis of this paper is on lightweight cryptology, and our investigation shows unavailability of a correlation electromagnetic analysis (CEMA) of it. Hence, in an effort to fill in this research gap, we opted to investigate the capabilities of CEMA against the PRESENT algorithm. This work aims to determine the probability of secret key leakage with a minimum number of electromagnetic (EM) waveforms possible. The process initially started from a simple EM analysis (SEMA) and gradually enhanced up to a CEMA. This paper presents our methodology in attack modelling, current results that indicate a probability of leaking seven bytes of the key and upcoming plans for optimisation. In addition, introductions to lightweight cryptanalysis and theories of EMA are also included.
2023-02-03
Kumar, Manish, Soni, Aman, Shekhawat, Ajay Raj Singh, Rawat, Akash.  2022.  Enhanced Digital Image and Text Data Security Using Hybrid Model of LSB Steganography and AES Cryptography Technique. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :1453–1457.
In the present innovation, for the trading of information, the internet is the most well-known and significant medium. With the progression of the web and data innovation, computerized media has become perhaps the most famous and notable data transfer tools. This advanced information incorporates text, pictures, sound, video etc moved over the public organization. The majority of these advanced media appear as pictures and are a significant part in different applications, for example, chat, talk, news, website, web-based business, email, and digital books. The content is still facing various challenges in which including the issues of protection of copyright, modification, authentication. Cryptography, steganography, embedding techniques is widely used to secure the digital data. In this present the hybrid model of LSB steganography and Advanced Encryption Standard (AES) cryptography techniques to enhanced the security of the digital image and text that is undeniably challenging to break by the unapproved person. The security level of the secret information is estimated in the term of MSE and PSNR for better hiding required the low MSE and high PSNR values.