Biblio
Filters: Keyword is privacy [Clear All Filters]
Elliptic Curve Cryptography for Security in Connected Vehicles. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1–4.
.
2022. The concept of a connected vehicle refers to the linking of vehicles to each other and to other things. Today, developments in the Internet of Things (IoT) and 5G have made a significant contribution to connected vehicle technology. In addition to many positive contributions, connected vehicle technology also brings with it many security-related problems. In this study, a digital signature algorithm based on elliptic curve cryptography is proposed to verify the message and identity sent to the vehicles. In the proposed model, with the anonymous identification given to the vehicle by the central unit, the vehicle is prevented from being detected by other vehicles and third parties. Thus, even if the personal data produced in the vehicles is shared, it cannot be found which vehicle it belongs to.
ISSN: 2165-0608
Facial Privacy Preservation using FGSM and Universal Perturbation attacks. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:46—52.
.
2022. Research done in Facial Privacy so far has entrenched the scope of gleaning race, age, and gender from a human’s facial image that are classifiable and compliant biometric attributes. Noticeable distortions, morphing, and face-swapping are some of the techniques that have been researched to restore consumers’ privacy. By fooling face recognition models, these techniques cater superficially to the needs of user privacy, however, the presence of visible manipulations negatively affects the aesthetic of the image. The objective of this work is to highlight common adversarial techniques that can be used to introduce granular pixel distortions using white-box and black-box perturbation algorithms that ensure the privacy of users’ sensitive or personal data in face images, fooling AI facial recognition models while maintaining the aesthetics of and visual integrity of the image.
Fashion Images Classification using Machine Learning, Deep Learning and Transfer Learning Models. 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA). :1—5.
.
2022. Fashion is the way we present ourselves which mainly focuses on vision, has attracted great interest from computer vision researchers. It is generally used to search fashion products in online shopping malls to know the descriptive information of the product. The main objectives of our paper is to use deep learning (DL) and machine learning (ML) methods to correctly identify and categorize clothing images. In this work, we used ML algorithms (support vector machines (SVM), K-Nearest Neirghbors (KNN), Decision tree (DT), Random Forest (RF)), DL algorithms (Convolutionnal Neurals Network (CNN), AlexNet, GoogleNet, LeNet, LeNet5) and the transfer learning using a pretrained models (VGG16, MobileNet and RestNet50). We trained and tested our models online using google colaboratory with Tensorflow/Keras and Scikit-Learn libraries that support deep learning and machine learning in Python. The main metric used in our study to evaluate the performance of ML and DL algorithms is the accuracy and matrix confusion. The best result for the ML models is obtained with the use of ANN (88.71%) and for the DL models is obtained for the GoogleNet architecture (93.75%). The results obtained showed that the number of epochs and the depth of the network have an effect in obtaining the best results.
GREBE: Unveiling Exploitation Potential for Linux Kernel Bugs. 2022 IEEE Symposium on Security and Privacy (SP). :2078–2095.
.
2022. Nowadays, dynamic testing tools have significantly expedited the discovery of bugs in the Linux kernel. When unveiling kernel bugs, they automatically generate reports, specifying the errors the Linux encounters. The error in the report implies the possible exploitability of the corresponding kernel bug. As a result, many security analysts use the manifested error to infer a bug’s exploitability and thus prioritize their exploit development effort. However, using the error in the report, security researchers might underestimate a bug’s exploitability. The error exhibited in the report may depend upon how the bug is triggered. Through different paths or under different contexts, a bug may manifest various error behaviors implying very different exploitation potentials. This work proposes a new kernel fuzzing technique to explore all the possible error behaviors that a kernel bug might bring about. Unlike conventional kernel fuzzing techniques concentrating on kernel code coverage, our fuzzing technique is more directed towards the buggy code fragment. It introduces an object-driven kernel fuzzing technique to explore various contexts and paths to trigger the reported bug, making the bug manifest various error behaviors. With the newly demonstrated errors, security researchers could better infer a bug’s possible exploitability. To evaluate our proposed technique’s effectiveness, efficiency, and impact, we implement our fuzzing technique as a tool GREBE and apply it to 60 real-world Linux kernel bugs. On average, GREBE could manifest 2+ additional error behaviors for each of the kernel bugs. For 26 kernel bugs, GREBE discovers higher exploitation potential. We report to kernel vendors some of the bugs – the exploitability of which was wrongly assessed and the corresponding patch has not yet been carefully applied – resulting in their rapid patch adoption.
ISSN: 2375-1207
How Not to Protect Your IP – An Industry-Wide Break of IEEE 1735 Implementations. 2022 IEEE Symposium on Security and Privacy (SP). :1656–1671.
.
2022. Modern hardware systems are composed of a variety of third-party Intellectual Property (IP) cores to implement their overall functionality. Since hardware design is a globalized process involving various (untrusted) stakeholders, a secure management of the valuable IP between authors and users is inevitable to protect them from unauthorized access and modification. To this end, the widely adopted IEEE standard 1735-2014 was created to ensure confidentiality and integrity. In this paper, we outline structural weaknesses in IEEE 1735 that cannot be fixed with cryptographic solutions (given the contemporary hardware design process) and thus render the standard inherently insecure. We practically demonstrate the weaknesses by recovering the private keys of IEEE 1735 implementations from major Electronic Design Automation (EDA) tool vendors, namely Intel, Xilinx, Cadence, Siemens, Microsemi, and Lattice, while results on a seventh case study are withheld. As a consequence, we can decrypt, modify, and re-encrypt all allegedly protected IP cores designed for the respective tools, thus leading to an industry-wide break. As part of this analysis, we are the first to publicly disclose three RSA-based white-box schemes that are used in real-world products and present cryptanalytical attacks for all of them, finally resulting in key recovery.
Improved Steganography Based on Referential Cover and Non-symmetric Embedding. 2022 IEEE 5th International Conference on Electronics Technology (ICET). :1202–1206.
.
2022. Minimizing embedding impact model of steganography has good performance for steganalysis detection. By using effective distortion cost function and coding method, steganography under this model becomes the mainstream embedding framework recently. In this paper, to improve the anti-detection performance, a new steganography optimization model by constructing a reference cover is proposed. First, a reference cover is construed by performing a filtering operation on the cover image. Then, by minimizing the residual between the reference cover and the original cover, the optimization function is formulated considering the effect of different modification directions. With correcting the distortion cost of +1 and \_1 modification operations, the stego image obtained by the proposed method is more consistent with the natural image. Finally, by applying the proposed framework to the cost function of the well-known HILL embedding, experimental results show that the anti-detection performance of the proposed method is better than the traditional method.
ISSN: 2768-6515
Intrusion Detection using a Graphical Fingerprint Model. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :806–813.
.
2022. The Activity and Event Network (AEN) graph is a new framework that allows modeling and detecting intrusions by capturing ongoing security-relevant activity and events occurring at a given organization using a large time-varying graph model. The graph is generated by processing various network security logs, such as network packets, system logs, and intrusion detection alerts. In this paper, we show how known attack methods can be captured generically using attack fingerprints based on the AEN graph. The fingerprints are constructed by identifying attack idiosyncrasies under the form of subgraphs that represent indicators of compromise (IOes), and then encoded using Property Graph Query Language (PGQL) queries. Among the many attack types, three main categories are implemented as a proof of concept in this paper: scanning, denial of service (DoS), and authentication breaches; each category contains its common variations. The experimental evaluation of the fingerprints was carried using a combination of intrusion detection datasets and yielded very encouraging results.
"It builds trust with the customers" - Exploring User Perceptions of the Padlock Icon in Browser UI. 2022 IEEE Security and Privacy Workshops (SPW). :44–50.
.
2022. We performed a large-scale online survey (n=1,880) to study the padlock icon, an established security indicator in web browsers that denotes connection security through HTTPS. In this paper, we evaluate users’ understanding of the padlock icon, and how removing or replacing it might influence their expectations and decisions. We found that the majority of respondents (89%) had misconceptions about the padlock’s meaning. While only a minority (23%-44%) referred to the padlock icon at all when asked to evaluate trustworthiness, these padlock-aware users reported that they would be deterred from a hypothetical shopping transaction when the padlock icon was absent. These users were reassured after seeing secondary UI surfaces (i.e., Chrome Page Info) where more verbose information about connection security was present.We conclude that the padlock icon, displayed by browsers in the address bar, is still misunderstood by many users. The padlock icon guarantees connection security, but is often perceived to indicate the general privacy, security, and trustworthiness of a website. We argue that communicating connection security precisely and clearly is likely to be more effective through secondary UI, where there is more surface area for content. We hope that this paper boosts the discussion about the benefits and drawbacks of showing passive security indicators in the browser UI.
ISSN: 2770-8411
JIGSAW: Efficient and Scalable Path Constraints Fuzzing. 2022 IEEE Symposium on Security and Privacy (SP). :18—35.
.
2022. Coverage-guided testing has shown to be an effective way to find bugs. If we model coverage-guided testing as a search problem (i.e., finding inputs that can cover more branches), then its efficiency mainly depends on two factors: (1) the accuracy of the searching algorithm and (2) the number of inputs that can be evaluated per unit time. Therefore, improving the search throughput has shown to be an effective way to improve the performance of coverage-guided testing.In this work, we present a novel design to improve the search throughput: by evaluating newly generated inputs with JIT-compiled path constraints. This approach allows us to significantly improve the single thread throughput as well as scaling to multiple cores. We also developed several optimization techniques to eliminate major bottlenecks during this process. Evaluation of our prototype JIGSAW shows that our approach can achieve three orders of magnitude higher search throughput than existing fuzzers and can scale to multiple cores. We also find that with such high throughput, a simple gradient-guided search heuristic can solve path constraints collected from a large set of real-world programs faster than SMT solvers with much more sophisticated search heuristics. Evaluation of end-to-end coverage-guided testing also shows that our JIGSAW-powered hybrid fuzzer can outperform state-of-the-art testing tools.
Malware Detection Approach Based on the Swarm-Based Behavioural Analysis over API Calling Sequence. 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). :27—32.
.
2022. The rapidly increasing malware threats must be coped with new effective malware detection methodologies. Current malware threats are not limited to daily personal transactions but dowelled deeply within large enterprises and organizations. This paper introduces a new methodology for detecting and discriminating malicious versus normal applications. In this paper, we employed Ant-colony optimization to generate two behavioural graphs that characterize the difference in the execution behavior between malware and normal applications. Our proposed approach relied on the API call sequence generated when an application is executed. We used the API calls as one of the most widely used malware dynamic analysis features. Our proposed method showed distinctive behavioral differences between malicious and non-malicious applications. Our experimental results showed a comparative performance compared to other machine learning methods. Therefore, we can employ our method as an efficient technique in capturing malicious applications.
Research on Image Encryption based on Generalized M-J Set. 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). :1165–1168.
.
2022. With the rapid development of information technology, hacker invasion, Internet fraud and privacy disclosure and other events frequently occur, therefore information security issues become the focus of attention. Protecting the secure transmission of information has become a hot topic in today's research. As the carrier of information, image has the characteristics of vivid image and large amount of information. It has become an indispensable part of people's communication. In this paper, we proposed the key simulation analysis research based on M-J set. The research uses a complex iterative mapping to construct M set. On the basis of the constructed M set, the constructed Julia set is used to form the encryption key. The experimental results show that the generalized M-set has the characteristics of chaotic characteristic and initial value sensitivity, and the complex mapping greatly exaggerates the key space. The research on the key space based on the generalized M-J set is helpful to improve the effect of image encryption.
A Secret-Free Hypervisor: Rethinking Isolation in the Age of Speculative Vulnerabilities. 2022 IEEE Symposium on Security and Privacy (SP). :370—385.
.
2022. In recent years, the epidemic of speculative side channels significantly increases the difficulty in enforcing domain isolation boundaries in a virtualized cloud environment. Although mitigations exist, the approach taken by the industry is neither a long-term nor a scalable solution, as we target each vulnerability with specific mitigations that add up to substantial performance penalties. We propose a different approach to secret isolation: guaranteeing that the hypervisor is Secret-Free (SF). A Secret-Free design partitions memory into secrets and non-secrets and reconstructs hypervisor isolation. It enforces that all domains have a minimal and secret-free view of the address space. In contrast to state-of-the-art, a Secret-Free hypervisor does not identify secrets to be hidden, but instead identifies non-secrets that can be shared, and only grants access necessary for the current operation, an allow-list approach. SF designs function with existing hardware and do not exhibit noticeable performance penalties in production workloads versus the unmitigated baseline, and outperform state-of-the-art techniques by allowing speculative execution where secrets are invisible. We implement SF in Xen (a Type-I hypervisor) to demonstrate that the design applies well to a commercial hypervisor. Evaluation shows performance comparable to baseline and up to 37% improvement in certain hypervisor paths compared with Xen default mitigations. Further, we demonstrate Secret-Free is a generic kernel isolation infrastructure for a variety of systems, not limited to Type-I hypervisors. We apply the same model in Hyper-V (Type-I), bhyve (Type-II) and FreeBSD (UNIX kernel) to evaluate its applicability and effectiveness. The successful implementations on these systems prove the generality of SF, and reveal the specific adaptations and optimizations required for each type of kernel.
Security Foundations for Application-Based Covert Communication Channels. 2022 IEEE Symposium on Security and Privacy (SP). :1971—1986.
.
2022. We introduce the notion of an application-based covert channel—or ABCC—which provides a formal syntax for describing covert channels that tunnel messages through existing protocols. Our syntax captures many recent systems, including DeltaShaper (PETS 2017) and Protozoa (CCS 2020). We also define what it means for an ABCC to be secure against a passive eavesdropper, and prove that suitable abstractions of existing censorship circumvention systems satisfy our security notion. In doing so, we define a number of important non-cryptographic security assumptions that are often made implicitly in prior work. We believe our formalisms may be useful to censorship circumvention developers for reasoning about the security of their systems and the associated security assumptions required.
SYMBEXCEL: Automated Analysis and Understanding of Malicious Excel 4.0 Macros. 2022 IEEE Symposium on Security and Privacy (SP). :1066–1081.
.
2022. Malicious software (malware) poses a significant threat to the security of our networks and users. In the ever-evolving malware landscape, Excel 4.0 Office macros (XL4) have recently become an important attack vector. These macros are often hidden within apparently legitimate documents and under several layers of obfuscation. As such, they are difficult to analyze using static analysis techniques. Moreover, the analysis in a dynamic analysis environment (a sandbox) is challenging because the macros execute correctly only under specific environmental conditions that are not always easy to create. This paper presents SYMBEXCEL, a novel solution that leverages symbolic execution to deobfuscate and analyze Excel 4.0 macros automatically. Our approach proceeds in three stages: (1) The malicious document is parsed and loaded in memory; (2) Our symbolic execution engine executes the XL4 formulas; and (3) Our Engine concretizes any symbolic values encountered during the symbolic exploration, therefore evaluating the execution of each macro under a broad range of (meaningful) environment configurations. SYMBEXCEL significantly outperforms existing deobfuscation tools, allowing us to reliably extract Indicators of Compromise (IoCs) and other critical forensics information. Our experiments demonstrate the effectiveness of our approach, especially in deobfuscating novel malicious documents that make heavy use of environment variables and are often not identified by commercial anti-virus software.
ISSN: 2375-1207
TEE-based decentralized recommender systems: The raw data sharing redemption. 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS). :447–458.
.
2022. Recommenders are central in many applications today. The most effective recommendation schemes, such as those based on collaborative filtering (CF), exploit similarities between user profiles to make recommendations, but potentially expose private data. Federated learning and decentralized learning systems address this by letting the data stay on user's machines to preserve privacy: each user performs the training on local data and only the model parameters are shared. However, sharing the model parameters across the network may still yield privacy breaches. In this paper, we present Rex, the first enclave-based decentralized CF recommender. Rex exploits Trusted execution environments (TEE), such as Intel software guard extensions (SGX), that provide shielded environments within the processor to improve convergence while preserving privacy. Firstly, Rex enables raw data sharing, which ultimately speeds up convergence and reduces the network load. Secondly, Rex fully preserves privacy. We analyze the impact of raw data sharing in both deep neural network (DNN) and matrix factorization (MF) recommenders and showcase the benefits of trusted environments in a full-fledged implementation of Rex. Our experimental results demonstrate that through raw data sharing, Rex significantly decreases the training time by 18.3 x and the network load by 2 orders of magnitude over standard decentralized approaches that share only parameters, while fully protecting privacy by leveraging trustworthy hardware enclaves with very little overhead.
ISSN: 1530-2075
Towards Improving the Deprecation Process of Web Features through Progressive Web Security. 2022 IEEE Security and Privacy Workshops (SPW). :20–30.
.
2022. To keep up with the continuous modernization of web applications and to facilitate their development, a large number of new features are introduced to the web platform every year. Although new web features typically undergo a security review, issues affecting the privacy and security of users could still surface at a later stage, requiring the deprecation and removal of affected APIs. Furthermore, as the web evolves, so do the expectations in terms of security and privacy, and legacy features might need to be replaced with improved alternatives. Currently, this process of deprecating and removing features is an ad-hoc effort that is largely uncoordinated between the different browser vendors. This causes a discrepancy in terms of compatibility and could eventually lead to the deterrence of the removal of an API, prolonging potential security threats. In this paper we propose a progressive security mechanism that aims to facilitate and standardize the deprecation and removal of features that pose a risk to users’ security, and the introduction of features that aim to provide additional security guarantees.
ISSN: 2770-8411
Towards Improving the Security of Cognitive Radio Networks-Based Energy Harvesting. ICC 2022 - IEEE International Conference on Communications. :3436–3441.
.
2022. In this paper, physical-layer security (PLS) of an underlay cognitive radio network (CRN) operating over cascaded Rayleigh fading channels is examined. In this scenario, a secondary user (SU) transmitter communicates with a SU receiver through a cascaded Rayleigh fading channel while being exposed to eavesdroppers. By harvesting energy from the SU transmitter, a cooperating jammer attempts to ensure the privacy of the transmitted communications. That is, this harvested energy is utilized to generate and spread jamming signals to baffle the information interception at eavesdroppers. Additionally, two scenarios are examined depending on the manner in which eavesdroppers intercept messages; colluding and non-colluding eavesdroppers. These scenarios are compared to determine which poses the greatest risk to the network. Furthermore, the channel cascade effect on security is investigated. Distances between users and the density of non-colluding eavesdroppers are also investigated. Moreover, cooperative jamming-based energy harvesting effectiveness is demonstrated.
When Deep Learning Meets Steganography: Protecting Inference Privacy in the Dark. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications. :590–599.
.
2022. While cloud-based deep learning benefits for high-accuracy inference, it leads to potential privacy risks when exposing sensitive data to untrusted servers. In this paper, we work on exploring the feasibility of steganography in preserving inference privacy. Specifically, we devise GHOST and GHOST+, two private inference solutions employing steganography to make sensitive images invisible in the inference phase. Motivated by the fact that deep neural networks (DNNs) are inherently vulnerable to adversarial attacks, our main idea is turning this vulnerability into the weapon for data privacy, enabling the DNN to misclassify a stego image into the class of the sensitive image hidden in it. The main difference is that GHOST retrains the DNN into a poisoned network to learn the hidden features of sensitive images, but GHOST+ leverages a generative adversarial network (GAN) to produce adversarial perturbations without altering the DNN. For enhanced privacy and a better computation-communication trade-off, both solutions adopt the edge-cloud collaborative framework. Compared with the previous solutions, this is the first work that successfully integrates steganography and the nature of DNNs to achieve private inference while ensuring high accuracy. Extensive experiments validate that steganography has excellent ability in accuracy-aware privacy protection of deep learning.
ISSN: 2641-9874
Android Malware Risk Evaluation Using Fuzzy Logic. 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC). :341—345.
.
2022. The static and dynamic malware analysis are used by industrialists and academics to understand malware capabilities and threat level. The antimalware industries calculate malware threat levels using different techniques which involve human involvement and a large number of resources and analysts. As malware complexity, velocity and volume increase, it becomes impossible to allocate so many resources. Due to this reason, it is projected that the number of malware apps will continue to rise, and that more devices will be targeted in order to commit various sorts of cybercrime. It is therefore necessary to develop techniques that can calculate the damage or threat posed by malware automatically as soon as it is identified. In this way, early warnings about zero-day (unknown) malware can assist in allocating resources for carrying out a close analysis of it as soon as it is identified. In this paper, a fuzzy modelling approach is described for calculating the potential risk of malicious programs through static malware analysis.
Challenges and future directions for security and privacy in vehicular fog computing. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :693—699.
.
2022. Cooperative Intelligent Transportation System (CITS) has been introduced recently to increase road safety, traffic efficiency, and to enable various infotainment and comfort applications and services. To this end, a bunch technologies have been deployed to maintain and promote ITS. In essence, ITS is composed of vehicles, roadside infrastructure, and the environment that includes pedestrians, and other entities. Recently, several solutions were suggested to handle with the challenges faced by the vehicular networks (VN) using future internet architectures. One of the promising solutions proposed recently is Vehicular Fog computing (VFC), an attractive solution that supports sensitive service requests considering factors such as latency, mobility, localization, and scalability. VFC also provides a virtual platform for real-time big data analytic using servers or vehicles as a fog infrastructure. This paper surveys the general fog computing (FC) concept, the VFC architectures, and the key characteristics of several intelligent computing applications. We mainly focus on trust and security challenges in VFC deployment and real-time BD analytic in vehicular environment. We identify the faced challenges and future research directions in VFC and we highlight the research gap that can be exploited by researchers and vehicular manufactures while designing a new secure VFC architecture.
Dynamic analysis for a novel fractional-order malware propagation model system with time delay. 2022 China Automation Congress (CAC). :6561—6566.
.
2022. The rapid development of network information technology, individual’s information networks security has become a very critical issue in our daily life. Therefore, it is necessary to study the malware propagation model system. In this paper, the traditional integer order malware propagation model system is extended to the field of fractional-order. Then we analyze the asymptotic stability of the fractional-order malware propagation model system when the equilibrium point is the origin and the time delay is 0. Next, the asymptotic stability and bifurcation analysis of the fractional-order malware propagation model system when the equilibrium point is the origin and the time delay is not 0 are carried out. Moreover, we study the asymptotic stability of the fractional-order malware propagation model system with an interior equilibrium point. In the end, so as to verify our theoretical results, many numerical simulations are provided.
Flubot Malware Hybrid Analysis on Android Operating System. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS). :202—206.
.
2022. The rising use of smartphones each year is matched by the development of the smartphone's operating system, Android. Due to the immense popularity of the Android operating system, many unauthorized users (in this case, the attackers) wish to exploit this vulnerability to get sensitive data from every Android user. The flubot malware assault, which happened in 2021 and targeted Android devices practically globally, is one of the attacks on Android smartphones. It was known at the time that the flubot virus stole information, particularly from banking applications installed on the victim's device. To prevent this from happening again, we research the signature and behavior of flubot malware. In this study, a hybrid analysis will be conducted on three samples of flubot malware that are available on the open-source Hatching Triage platform. Using the Android Virtual Device (AVD) as the primary environment for malware installation, the analysis was conducted with the Android Debug Bridge (ADB) and Burpsuite as supporting tools for dynamic analysis. During the static analysis, the Mobile Security Framework (MobSF) and the Bytecode Viewer were used to examine the source code of the three malware samples. Analysis of the flubot virus revealed that it extracts or drops dex files on the victim's device, where the file is the primary malware. The Flubot virus will clone the messaging application or Short Message Service (SMS) on the default device. Additionally, we discovered a form of flubot malware that operates as a Domain Generation Algorithm (DGA) and communicates with its Command and Control (C&C) server.
Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation. 2022 IEEE International Conference on Data Mining (ICDM). :528–537.
.
2022. Social networks are considered to be heterogeneous graph neural networks (HGNNs) with deep learning technological advances. HGNNs, compared to homogeneous data, absorb various aspects of information about individuals in the training stage. That means more information has been covered in the learning result, especially sensitive information. However, the privacy-preserving methods on homogeneous graphs only preserve the same type of node attributes or relationships, which cannot effectively work on heterogeneous graphs due to the complexity. To address this issue, we propose a novel heterogeneous graph neural network privacy-preserving method based on a differential privacy mechanism named HeteDP, which provides a double guarantee on graph features and topology. In particular, we first define a new attack scheme to reveal privacy leakage in the heterogeneous graphs. Specifically, we design a two-stage pipeline framework, which includes the privacy-preserving feature encoder and the heterogeneous link reconstructor with gradients perturbation based on differential privacy to tolerate data diversity and against the attack. To better control the noise and promote model performance, we utilize a bi-level optimization pattern to allocate a suitable privacy budget for the above two modules. Our experiments on four public benchmarks show that the HeteDP method is equipped to resist heterogeneous graph privacy leakage with admirable model generalization.
ISSN: 2374-8486
Security issues in MCPS when using Wireless Sensor Networks. 2022 E-Health and Bioengineering Conference (EHB). :1—4.
.
2022. Considering the evolution of technology, the need to secure data is growing fast. When we turn our attention to the healthcare field, securing data and assuring privacy are critical conditions that must be accomplished. The information is sensitive and confidential, and the exchange rate is very fast. Over the years, the healthcare domain has gradually seen a growth of interest regarding the interconnectivity of different processes to optimize and improve the services that are provided. Therefore, we need intelligent complex systems that can collect and transport sensitive data in a secure way. These systems are called cyber-physical systems. In healthcare domain, these complex systems are named medical cyber physical systems. The paper presents a brief description of the above-mentioned intelligent systems. Then, we focus on wireless sensor networks and the issues and challenges that occur in securing sensitive data and what improvements we propose on this subject. In this paper we tried to provide a detailed overview about cyber-physical systems, medical cyber-physical systems, wireless sensor networks and the security issues that can appear.
Time of flight three-dimensional imaging camera using compressive sampling technique with sparse frequency intensity modulation light source. 2022 IEEE CPMT Symposium Japan (ICSJ). :168–171.
.
2022. The camera constructed by a megahertz range intensity modulation active light source and a kilo-frame rate range fast camera based on compressive sensing (CS) technique for three-dimensional (3D) image acquisition was proposed in this research.
ISSN: 2475-8418