Biblio
Affective1 engineering is a methodology of designing products by collecting customer affective needs and translating them into product designs. It usually begins with questionnaire surveys to collect customer affective demands and responses. However, this process is expensive, which can only be conducted periodically in a small scale. With the rapid development of e-commerce, a larger number of customer product reviews are available on the Internet. Many studies have been done using opinion mining and sentiment analysis. However, the existing studies focus on the polarity classification from a single perspective (such as positive and negative). The classification of multiple affective attributes receives less attention. In this paper, 3-class classifications of four different affective attributes (i.e. Soft-Hard, Appealing-Unappealing, Handy-Bulky, and Reliable-Shoddy) are performed by using two classical machine learning algorithms (i.e. Softmax regression and Support Vector Machine) and two deep learning methods (i.e. Restricted Boltzmann machines and Deep Belief Network) on an Amazon dataset. The results show that the accuracy of deep learning methods is above 90%, while the accuracy of classical machine learning methods is about 64%. This indicates that deep learning methods are significantly better than classical machine learning methods.
This paper present an approach to automate the conversion of Natural Language Query to SQL Query effectively. Structured Query Language is a powerful tool for managing data held in a relational database management system. To retrieve or manage data user have to enter the correct SQL Query. But the users who don't have any knowledge about SQL are unable to retrieve the required data. To overcome this we proposed a model in Natural Language Processing for converting the Natural Language Query to SQL query. This helps novice user to get required content without knowing any complex details about SQL. This system can also deal with complex queries. This system is designed for Training and Placement cell officers who work on student database but don't have any knowledge about SQL. In this system, user can also enter the query using speech. System will convert speech into the text format. This query will get transformed to SQL query. System will execute the query and gives output to the user.
Microsoft's PowerShell is a command-line shell and scripting language that is installed by default on Windows machines. Based on Microsoft's .NET framework, it includes an interface that allows programmers to access operating system services. While PowerShell can be configured by administrators for restricting access and reducing vulnerabilities, these restrictions can be bypassed. Moreover, PowerShell commands can be easily generated dynamically, executed from memory, encoded and obfuscated, thus making the logging and forensic analysis of code executed by PowerShell challenging. For all these reasons, PowerShell is increasingly used by cybercriminals as part of their attacks' tool chain, mainly for downloading malicious contents and for lateral movement. Indeed, a recent comprehensive technical report by Symantec dedicated to PowerShell's abuse by cybercrimials [52] reported on a sharp increase in the number of malicious PowerShell samples they received and in the number of penetration tools and frameworks that use PowerShell. This highlights the urgent need of developing effective methods for detecting malicious PowerShell commands. In this work, we address this challenge by implementing several novel detectors of malicious PowerShell commands and evaluating their performance. We implemented both "traditional" natural language processing (NLP) based detectors and detectors based on character-level convolutional neural networks (CNNs). Detectors' performance was evaluated using a large real-world dataset. Our evaluation results show that, although our detectors (and especially the traditional NLP-based ones) individually yield high performance, an ensemble detector that combines an NLP-based classifier with a CNN-based classifier provides the best performance, since the latter classifier is able to detect malicious commands that succeed in evading the former. Our analysis of these evasive commands reveals that some obfuscation patterns automatically detected by the CNN classifier are intrinsically difficult to detect using the NLP techniques we applied. Our detectors provide high recall values while maintaining a very low false positive rate, making us cautiously optimistic that they can be of practical value.
This paper presents an assessment of continuous verification using linguistic style as a cognitive biometric. In stylometry, it is widely known that linguistic style is highly characteristic of authorship using representations that capture authorial style at character, lexical, syntactic, and semantic levels. In this work, we provide a contrast to previous efforts by implementing a one-class classification problem using Isolation Forests. Our approach demonstrates the usefulness of this classifier for accurately verifying the genuine user, and yields recognition accuracy exceeding 98% using very small training samples of 50 and 100-character blocks.
Corpora used to learn open-domain Question-Answering (QA) models are typically collected from a wide variety of topics or domains. Since QA requires understanding natural language, open-domain QA models generally need very large training corpora. A simple way to alleviate data demand is to restrict the domain covered by the QA model, leading thus to domain-specific QA models. While learning improved QA models for a specific domain is still challenging due to the lack of sufficient training data in the topic of interest, additional training data can be obtained from related topic domains. Thus, instead of learning a single open-domain QA model, we investigate domain adaptation approaches in order to create multiple improved domain-specific QA models. We demonstrate that this can be achieved by stratifying the source dataset, without the need of searching for complementary data unlike many other domain adaptation approaches. We propose a deep architecture that jointly exploits convolutional and recurrent networks for learning domain-specific features while transferring domain-shared features. That is, we use transferable features to enable model adaptation from multiple source domains. We consider different transference approaches designed to learn span-level and sentence-level QA models. We found that domain-adaptation greatly improves sentence-level QA performance, and span-level QA benefits from sentence information. Finally, we also show that a simple clustering algorithm may be employed when the topic domains are unknown and the resulting loss in accuracy is negligible.
With so much our daily lives relying on digital devices like personal computers and cell phones, there is a growing demand for code that not only functions properly, but is secure and keeps user data safe. However, ensuring this is not such an easy task, and many developers do not have the required skills or resources to ensure their code is secure. Many code analysis tools have been written to find vulnerabilities in newly developed code, but this technology tends to produce many false positives, and is still not able to identify all of the problems. Other methods of finding software vulnerabilities automatically are required. This proof-of-concept study applied natural language processing on Java byte code to locate SQL injection vulnerabilities in a Java program. Preliminary findings show that, due to the high number of terms in the dataset, using singular decision trees will not produce a suitable model for locating SQL injection vulnerabilities, while random forest structures proved more promising. Still, further work is needed to determine the best classification tool.
One of the challenges in supplying the communities with wider access to scientific databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it might not be practical to make the public aware of the structure of databases. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide a more intuitive method for generating database queries and delivering responses. Through social media, which makes it possible to interact with a wide section of the population, and with the help of natural language processing, researchers at the Atmospheric Radiation Measurement (ARM) Data Center at Oak Ridge National Laboratory (ORNL) have developed a concept to enable easy search and retrieval of data from several environmental data centers for the scientific community through social media.Using a machine learning framework that maps natural language text to thousands of datasets, instruments, variables, and data streams, the prototype system would allow users to request data through Twitter and receive a link (via tweet) to applicable data results on the project's search catalog tailored to their key words. This automated identification of relevant data from various petascale archives at ORNL could increase convenience, access, and use of the project's data by the broader community. In this paper we discuss how some data-intensive projects at ORNL are using innovative ways to help in data discovery.
The paper dwells on the peculiarities of stylometry technologies usage to determine the style of the author publications. Statistical linguistic analysis of the author's text allows taking advantage of text content monitoring based on Porter stemmer and NLP methods to determine the set of stop words. The latter is used in the methods of stylometry to determine the ownership of the analyzed text to a specific author in percentage points. There is proposed a formal approach to the definition of the author's style of the Ukrainian text in the article. The experimental results of the proposed method for determining the ownership of the analyzed text to a particular author upon the availability of the reference text fragment are obtained. The study was conducted on the basis of the Ukrainian scientific texts of a technical area.
Every day, huge amounts of unstructured text is getting generated. Most of this data is in the form of essays, research papers, patents, scholastic articles, book chapters etc. Many plagiarism softwares are being developed to be used in order to reduce the stealing and plagiarizing of Intellectual Property (IP). Current plagiarism softwares are mainly using string matching algorithms to detect copying of text from another source. The drawback of some of such plagiarism softwares is their inability to detect plagiarism when the structure of the sentence is changed. Replacement of keywords by their synonyms also fails to be detected by these softwares. This paper proposes a new method to detect such plagiarism using semantic knowledge graphs. The method uses Named Entity Recognition as well as semantic similarity between sentences to detect possible cases of plagiarism. The doubtful cases are visualized using semantic Knowledge Graphs for thorough analysis of authenticity. Rules for active and passive voice have also been considered in the proposed methodology.
Social media has been one of the most efficacious and precise by speakers of public opinion. A strategy which sanctions the utilization and illustration of twitter data to conclude public conviction is discussed in this paper. Sentiments on exclusive entities with diverse strengths and intenseness are stated by public, where these sentiments are strenuously cognate to their personal mood and emotions. To examine the sentiments from natural language texts, addressing various opinions, a lot of methods and lexical resources have been propounded. A path for boosting twitter sentiment classification using various sentiment proportions as meta-level features has been proposed by this article. Analysis of tweets was done on the product iPhone 6.
This article shows the analogy between natural language texts and quantum-like systems on the example of the Bell test calculating. The applicability of the well-known Bell test for texts in Russian is investigated. The possibility of using this test for the text separation on the topics corresponding to the user query in information retrieval system is shown.
Early detection of new kinds of malware always plays an important role in defending the network systems. Especially, if intelligent protection systems could themselves detect an existence of new malware types in their system, even with a very small number of malware samples, it must be a huge benefit for the organization as well as the social since it help preventing the spreading of that kind of malware. To deal with learning from few samples, term ``one-shot learning'' or ``fewshot learning'' was introduced, and mostly used in computer vision to recognize images, handwriting, etc. An approach introduced in this paper takes advantage of One-shot learning algorithms in solving the malware classification problem by using Memory Augmented Neural Network in combination with malware's API calls sequence, which is a very valuable source of information for identifying malware behavior. In addition, it also use some advantages of the development in Natural Language Processing field such as word2vec, etc. to convert those API sequences to numeric vectors before feeding to the one-shot learning network. The results confirm very good accuracies compared to the other traditional methods.
One challenge for cybersecurity experts is deciding which type of attack would be successful against the system they wish to protect. Often, this challenge is addressed in an ad hoc fashion and is highly dependent upon the skill and knowledge base of the expert. In this study, we present a method for automatically ranking attack patterns in the Common Attack Pattern Enumeration and Classification (CAPEC) database for a given system. This ranking method is intended to produce suggested attacks to be evaluated by a cybersecurity expert and not a definitive ranking of the "best" attacks. The proposed method uses topic modeling to extract hidden topics from the textual description of each attack pattern and learn the parameters of a topic model. The posterior distribution of topics for the system is estimated using the model and any provided text. Attack patterns are ranked by measuring the distance between each attack topic distribution and the topic distribution of the system using KL divergence.
The following article shows the precision, the recall and the F1-measure for three knowledge extraction methods under Open Information Extraction paradigm. These methods are: ReVerb, OLLIE and ClausIE. For the calculation of these three measures, a representative sample of Reuters-21578 was used; 103 newswire texts were taken randomly from that database. A big discrepancy was observed, after analyzing the obtained results, between the expected and the observed precision for ClausIE. In order to save the observed gap in ClausIE precision, a simple improvement is proposed for the method. Although the correction improved the precision of Clausie, ReVerb turned out to be the most precise method; however ClausIE is the one with the better F1-measure.
Defect prediction is an active topic in software quality assurance, which can help developers find potential bugs and make better use of resources. To improve prediction performance, this paper introduces cross-entropy, one common measure for natural language, as a new code metric into defect prediction tasks and proposes a framework called DefectLearner for this process. We first build a recurrent neural network language model to learn regularities in source code from software repository. Based on the trained model, the cross-entropy of each component can be calculated. To evaluate the discrimination for defect-proneness, cross-entropy is compared with 20 widely used metrics on 12 open-source projects. The experimental results show that cross-entropy metric is more discriminative than 50% of the traditional metrics. Besides, we combine cross-entropy with traditional metric suites together for accurate defect prediction. With cross-entropy added, the performance of prediction models is improved by an average of 2.8% in F1-score.
Although sequence-to-sequence attentional neural machine translation (NMT) has achieved great progress recently, it is confronted with two challenges: learning optimal model parameters for long parallel sentences and well exploiting different scopes of contexts. In this paper, partially inspired by the idea of segmenting a long sentence into short clauses, each of which can be easily translated by NMT, we propose a hierarchy-to-sequence attentional NMT model to handle these two challenges. Our encoder takes the segmented clause sequence as input and explores a hierarchical neural network structure to model words, clauses, and sentences at different levels, particularly with two layers of recurrent neural networks modeling semantic compositionality at the word and clause level. Correspondingly, the decoder sequentially translates segmented clauses and simultaneously applies two types of attention models to capture contexts of interclause and intraclause for translation prediction. In this way, we can not only improve parameter learning, but also well explore different scopes of contexts for translation. Experimental results on Chinese-English and English-German translation demonstrate the superiorities of the proposed model over the conventional NMT model.
Text-based CAPTCHAs are still commonly used to attempt to prevent automated access to web services. By displaying an image of distorted text, they attempt to create a challenge image that OCR software can not interpret correctly, but a human user can easily determine the correct response to. This work focuses on a CAPTCHA used by a popular Chinese language question-and-answer website and how resilient it is to modern machine learning methods. While the majority of text-based CAPTCHAs focus on transcription tasks, the CAPTCHA solved in this work is based on localization of inverted symbols in a distorted image. A convolutional neural network (CNN) was created to evaluate the likelihood of a region in the image belonging to an inverted character. It is used with a feature map and clustering to identify potential locations of inverted characters. Training of the CNN was performed using curriculum learning and compared to other potential training methods. The proposed method was able to determine the correct response in 95.2% of cases of a simulated CAPTCHA and 67.6% on a set of real CAPTCHAs. Potential methods to increase difficulty of the CAPTCHA and the success rate of the automated solver are considered.
With an increase in targeted attacks such as advanced persistent threats (APTs), enterprise system defenders require comprehensive frameworks that allow them to collaborate and evaluate their defense systems against such attacks. MITRE has developed a framework which includes a database of different kill-chains, tactics, techniques, and procedures that attackers employ to perform these attacks. In this work, we leverage natural language processing techniques to extract attacker actions from threat report documents generated by different organizations and automatically classify them into standardized tactics and techniques, while providing relevant mitigation advisories for each attack. A naïve method to achieve this is by training a machine learning model to predict labels that associate the reports with relevant categories. In practice, however, sufficient labeled data for model training is not always readily available, so that training and test data come from different sources, resulting in bias. A naïve model would typically underperform in such a situation. We address this major challenge by incorporating an importance weighting scheme called bias correction that efficiently utilizes available labeled data, given threat reports, whose categories are to be automatically predicted. We empirically evaluated our approach on 18,257 real-world threat reports generated between year 2000 and 2018 from various computer security organizations to demonstrate its superiority by comparing its performance with an existing approach.
This paper proposed method for source code authorship attribution using modern natural language processing methods. Our method based on text embedding with convolutional recurrent neural network reaches 94.5% accuracy within 500 authors in one dataset, which outperformed many state of the art models for authorship attribution. Our approach is dealing with source code as with natural language texts, so it is potentially programming language independent with more potential of future improving.