Biblio

Found 342 results

Filters: Keyword is Access Control  [Clear All Filters]
2023-09-07
Cheng, Cheng, Liu, Zixiang, Zhao, Feng, Wang, Xiang, Wu, Feng.  2022.  Security Protection of Research Sensitive Data Based on Blockchain. 2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :237–241.
In order to meet the needs of intellectual property protection and controlled sharing of scientific research sensitive data, a mechanism is proposed for security protection throughout “transfer, store and use” process of sensitive data which based on blockchain. This blockchain bottom layer security is reinforced. First, the encryption algorithm used is replaced by the national secret algorithm and the smart contract is encapsulated as API at the gateway level. Signature validation is performed when the API is used to prevent illegal access. Then the whole process of data up-chain, storage and down-chain is encrypted, and a mechanism of data structure query and data query condition construction based on blockchain smart is provided to ensure that the data is “usable and invisible”. Finally, data access control is ensured through role-based and hierarchical protection, and the blockchain base developed has good extensibility, which can meet the requirement of sensitive data security protection in scientific research filed and has broad application prospects.
ISSN: 2473-3636
2022-10-20
Anashkin, Yegor V., Zhukova, Marina N..  2021.  About the System of Profiling User Actions Based on the Behavior Model. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :191—195.
The paper considers the issue of increasing the level of trust to the user of the information system by applying profiling actions. The authors have developed the model of user behavior, which allows to identify the user by his actions in the operating system. The model uses a user's characteristic metric instead of binary identification. The user's characteristic demonstrates the degree to which the current actions of the user corresponding to the user's behavior model. To calculate the user's characteristic, several formulas have been proposed. The authors propose to implement the developed behavior model into the access control model. For this purpose, the authors create the prototype of the user action profiling system for Windows family operating systems. This system should control access to protected resources by analyzing user behavior. The authors performed a series of tests with this system. This allowed to evaluate the accuracy of the system based on the proposed behavior model. Test results showed the type I errors. Therefore, the authors invented and described a polymodel approach to profiling actions. Potentially, the polymodel approach should solve the problem of the accuracy of the user action profiling system.
2022-03-01
Pollicino, Francesco, Ferretti, Luca, Stabili, Dario, Marchetti, Mirco.  2021.  Accountable and privacy-aware flexible car sharing and rental services. 2021 IEEE 20th International Symposium on Network Computing and Applications (NCA). :1–7.
The transportation sector is undergoing rapid changes to reduce pollution and increase life quality in urban areas. One of the most effective approaches is flexible car rental and sharing to reduce traffic congestion and parking space issues. In this paper, we envision a flexible car sharing framework where vehicle owners want to make their vehicles available for flexible rental to other users. The owners delegate the management of their vehicles to intermediate services under certain policies, such as municipalities or authorized services, which manage the due infrastructure and services that can be accessed by users. We investigate the design of an accountable solution that allow vehicles owners, who want to share their vehicles securely under certain usage policies, to control that delegated services and users comply with the policies. While monitoring users behavior, our approach also takes care of users privacy, preventing tracking or profiling procedures by other parties. Existing approaches put high trust assumptions on users and third parties, do not consider users' privacy requirements, or have limitations in terms of flexibility or applicability. We propose an accountable protocol that extends standard delegated authorizations and integrate it with Security Credential Management Systems (SCMS), while considering the requirements and constraints of vehicular networks. We show that the proposed approach represents a practical approach to guarantee accountability in realistic scenarios with acceptable overhead.
2022-04-19
Sethia, Divyashikha, Sahu, Raj, Yadav, Sandeep, Kumar, Ram.  2021.  Attribute Revocation in ECC-Based CP-ABE Scheme for Lightweight Resource-Constrained Devices. 2021 International Conference on Communication, Control and Information Sciences (ICCISc). 1:1–6.
Ciphertext Policy Attribute-Based Encryption (CPABE) has gained popularity in the research area among the many proposed security models for providing fine-grained access control of data. Lightweight ECC-based CP-ABE schemes can provide feasible selective sharing from resource-constrained devices. However, the existing schemes lack support for a complete revocation mechanism at the user and attribute levels. We propose a novel scheme called Ecc Proxy based Scalable Attribute Revocation (EPSAR-CP-ABE) scheme. It extends an existing ECC-based CP-ABE scheme for lightweight IoT and smart-card devices to implement scalable attribute revocation. The scheme does not require re-distribution of secret keys and re-encryption of ciphertext. It uses a proxy server to furnish a proxy component for decryption. The dependency of the proposed scheme is minimal on the proxy server compared to the other related schemes. The storage and computational overhead due to the attribute revocation feature are negligible. Hence, the proposed EPSAR-CP-ABE scheme can be deployed practically for resource-constrained devices.
2022-01-25
Abisheka, P. A. C, Azra, M. A. F, Poobalan, A. V, Wijekoon, Janaka, Yapa, Kavinga, Murthaja, Mifraz.  2021.  An Automated Solution For Securing Confidential Documents in a BYOD Environment. 2021 3rd International Conference on Advancements in Computing (ICAC). :61—66.
BYOD or Bring Your Own Device is a set of policies that allow employees of an organization to use their own devices for official work purposes. BYOD is an immensely popular concept in the present day due to the many advantages it provides. However, the implementation of BYOD policies entail diverse problems and as a result, the confidentiality of documents can be breached. Furthermore, employees without security awareness and training are highly vulnerable to endpoint attacks, network attacks, and zero-day attacks that lead to a breach of confidentiality, integrity, and availability (CIA). In this context, this paper proposes a comprehensive solution; ‘BYODENCE’, for the detection and prevention of unauthorized access to organizational documents. BYODENCE is an efficient BYOD solution which can produce competitive results in terms of accuracy and speed.
2022-04-01
Bichhawat, Abhishek, Fredrikson, Matt, Yang, Jean.  2021.  Automating Audit with Policy Inference. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1—16.
The risk posed by high-profile data breaches has raised the stakes for adhering to data access policies for many organizations, but the complexity of both the policies themselves and the applications that must obey them raises significant challenges. To mitigate this risk, fine-grained audit of access to private data has become common practice, but this is a costly, time-consuming, and error-prone process.We propose an approach for automating much of the work required for fine-grained audit of private data access. Starting from the assumption that the auditor does not have an explicit, formal description of the correct policy, but is able to decide whether a given policy fragment is partially correct, our approach gradually infers a policy from audit log entries. When the auditor determines that a proposed policy fragment is appropriate, it is added to the system's mechanized policy, and future log entries to which the fragment applies can be dealt with automatically. We prove that for a general class of attribute-based data policies, this inference process satisfies a monotonicity property which implies that eventually, the mechanized policy will comprise the full set of access rules, and no further manual audit is necessary. Finally, we evaluate this approach using a case study involving synthetic electronic medical records and the HIPAA rule, and show that the inferred mechanized policy quickly converges to the full, stable rule, significantly reducing the amount of effort needed to ensure compliance in a practical setting.
2022-06-09
Garrocho, Charles Tim Batista, Oliveira, Karine Nogueira, Sena, David José, da Cunha Cavalcanti, Carlos Frederico Marcelo, Oliveira, Ricardo Augusto Rabelo.  2021.  BACE: Blockchain-based Access Control at the Edge for Industrial Control Devices of Industry 4.0. 2021 XI Brazilian Symposium on Computing Systems Engineering (SBESC). :1–8.
The Industrial Internet of Things is expected to attract significant investments for Industry 4.0. In this new environment, the blockchain has immediate potential in industrial applications, providing unchanging, traceable and auditable access control. However, recent work and present in blockchain literature are based on a cloud infrastructure that requires significant investments. Furthermore, due to the placement and distance of the cloud infrastructure to industrial control devices, such approaches present a communication latency that can compromise the strict deadlines for accessing and communicating with this device. In this context, this article presents a blockchain-based access control architecture, which is deployed directly to edge devices positioned close to devices that need access control. Performance assessments of the proposed approach were carried out in practice in an industrial mining environment. The results of this assessment demonstrate the feasibility of the proposal and its performance compared to cloud-based approaches.
2022-02-24
Lahbib, Asma, Toumi, Khalifa, Laouiti, Anis, Martin, Steven.  2021.  Blockchain Based Privacy Aware Distributed Access Management Framework for Industry 4.0. 2021 IEEE 30th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). :51–56.
With the development of various technologies, the modern industry has been promoted to a new era known as Industry 4.0. Within such paradigm, smart factories are becoming widely recognized as the fundamental concept. These systems generate and exchange vast amounts of privacy-sensitive data, which makes them attractive targets of attacks and unauthorized access. To improve privacy and security within such environments, a more decentralized approach is seen as the solution to allow their longterm growth. Currently, the blockchain technology represents one of the most suitable candidate technologies able to support distributed and secure ecosystem for Industry 4.0 while ensuring reliability, information integrity and access authorization. Blockchain based access control frameworks address encountered challenges regarding the confidentiality, traceability and notarization of access demands and procedures. However significant additional fears are raised about entities' privacy regarding access history and shared policies. In this paper, our main focus is to ensure strong privacy guarantees over the access control related procedures regarding access requester sensitive attributes and shared access control policies. The proposed scheme called PDAMF based on ring signatures adds a privacy layer for hiding sensitive attributes while keeping the verification process transparent and public. Results from a real implementation plus performance evaluation prove the proposed concept and demonstrate its feasibility.
2022-01-25
Fan, Chun-I, Tseng, Yi-Fan, Feng, Cheng-Chun.  2021.  CCA-Secure Attribute-Based Encryption Supporting Dynamic Membership in the Standard Model. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Attribute-based encryption (ABE) is an access control mechanism where a sender encrypts messages according to an attribute set for multiple receivers. With fine-grained access control, it has been widely applied to cloud storage and file sharing systems. In such a mechanism, it is a challenge to achieve the revocation efficiently on a specific user since different users may share common attributes. Thus, dynamic membership is a critical issue to discuss. On the other hand, most works on LSSS-based ABE do not address the situation about threshold on the access structure, and it lowers the diversity of access policies. This manuscript presents an efficient attribute-based encryption scheme with dynamic membership by using LSSS. The proposed scheme can implement threshold gates in the access structure. Furthermore, it is the first ABE supporting complete dynamic membership that achieves the CCA security in the standard model, i.e. without the assumption of random oracles.
Wu, Qing, Li, Liangjun.  2021.  Ciphertext-Policy Attribute-Based Encryption for General Circuits in Cloud Computing. 2021 International Conference on Control, Automation and Information Sciences (ICCAIS). :620–625.
Driven by the development of Internet and information technology, cloud computing has been widely recognized and accepted by the public. However, with the occurrence of more and more information leakage, cloud security has also become one of the core problem of cloud computing. As one of the resolve methods of it, ciphertext-policy attribute-based encryption (CP-ABE) by embedding access policy into ciphertext can make data owner to decide which attributes can access ciphertext. It achieves ensuring data confidentiality with realizing fine-grained access control. However, the traditional access policy has some limitations. Compared with other access policies, the circuit-based access policy ABE supports more flexible access control to encrypted data. But there are still many challenges in the existing circuit-based access policy ABE, such as privacy leakage and low efficiency. Motivated by the above, a new circuit-based access policy ABE is proposed. By converting the multi output OR gates in monotonic circuit, the backtracking attacks in circuit access structure is avoided. In order to overcome the low efficiency issued by circuit conversion, outsourcing computing is adopted to Encryption/Decryption algorithms, which makes the computing overhead for data owners and users be decreased and achieve constant level. Security analysis shows that the scheme is secure under the decision bilinear Diffie-Hellman (DBDH) assumption. Numerical results show the proposed scheme has a higher computation efficiency than the other circuit-based schemes.
2022-05-05
Tseng, Yi-Fan, Gao, Shih-Jie.  2021.  Efficient Subset Predicate Encryption for Internet of Things. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1—2.
With the rapid development of Internet technologies, emerging network environments have been discussed, such as Internet of Things. In this manuscript, we proposed a novel subset predicate encryption for the access control in Internet of Things. Compared with the existing subset predicate encryption schemes, the proposed scheme enjoy the better efficiency due to the short private key and the efficient decryption procedure.
2022-08-26
Pande, Prateek, Mallaiah, Kurra, Gandhi, Rishi Kumar, Medatiya, Amit Kumar, Srinivasachary, S.  2021.  Fine Grained Confinement of Untrusted Third-Party Applications in Android. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :372—376.
Third party mobile applications are dominating the business strategies of organisations and have become an integral part of personal life of individuals. These applications are used for financial transactions, sharing of sensitive data etc. The recent breaches in Android clearly indicate that use of third party applications have become a serious security threat. By design, Android framework keeps all these applications in untrusted domain. Due to this a common policy of resource control exists for all such applications. Further, user discretion in granting permissions to specific applications is not effective because users are not always aware of deep functionalities, mala fide intentions (in case of spywares) and bugs/flaws in these third-party applications. In this regard, we propose a security scheme to mitigate unauthorised access of resources by third party applications. Our proposed scheme is based on SEAndroid policies and achieves fine grained confinement with respect to access control for the third party applications. To the best of our knowledge, the proposed scheme is unique and first of its kind. The proposed scheme is integrated with Android Oreo 8.1.0 for performance and security analysis. It is compatible with any Android device with AOSP support.
2022-04-18
Vijayalakshmi, K., Jayalakshmi, V..  2021.  Identifying Considerable Anomalies and Conflicts in ABAC Security Policies. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). :1273–1280.
Nowadays security of shared resources and big data is an important and critical issue. With the growth of information technology and social networks, data and resources are shared in the distributed environment such as cloud and fog computing. Various access control models protect the shared resources from unauthorized users or malicious intruders. Despite the attribute-based access control model that meets the complex security requirement of todays' new computing technologies, considerable anomalies and conflicts in ABAC policies affect the efficiency of the security system. One important and toughest task is policy validation thus to detect and eliminate anomalies and conflicts in policies. Though the previous researches identified anomalies, failed to detect and analyze all considerable anomalies that results vulnerable to hacks and attacks. The primary objective of this paper is to study and analyze the possible anomalies and conflicts in ABAC security policies. We have discussed and analyzed considerable conflicts in policies based on previous researches. This paper can provide a detailed review of anomalies and conflicts in security policies.
2022-05-09
Nana, Huang, Yuanyuan, Yang.  2021.  An Integrative and Privacy Preserving-Based Medical Cloud Platform. 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :411–414.
With the rapid development of cloud computing which has been extensively applied in the health research, the concept of medical cloud has become widespread. In this paper, we proposed an integrated medical cloud architecture with multiple applications based on privacy protection. The scheme in this paper adopted attribute encryption to ensure the PHR files encrypted all the time in order to protect the health privacy of the PHR owners not leaked. In addition, the medical cloud architecture proposed in this paper is suitable for multiple application scenarios. Different from the traditional domain division which has public domain (PUD) and private domain (PSD), the PUD domain is further divided into PUD1and PUD2 with finer granularity based on different permissions of the PHR users. In the PUD1, the PHR users have read or write access to the PHR files, while the PHR users in the PUD2 only have read permissions. In the PSD, we use key aggregation encryption (KAE) to realize the access control. For PHR users of PUD1 and PUD2, the outsourcable ABE technology is adopted to greatly reduce the computing burden of users. The results of function and performance test show that the scheme is safe and effective.
2022-03-09
Pichetjamroen, Sasakorn, Rattanalerdnusorn, Ekkachan, Vorakulpipat, Chalee, Pichetjamroen, Achara.  2021.  Multi-Factor based Face Validation Attendance System with Contactless Design in Training Event. 2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :637—640.
Various methods for face validation-based authentication systems have been applied in a number of access control applications. However, using only one biometric factor such as facial data may limit accuracy and use, and is not practical in a real environment. This paper presents the implementation of a face time attendance system with an additional factor, a QR code to improve accuracy. This two- factor authentication system was developed in the form of a kiosk with a contactless process, which emerged due to the COVID-19 pandemic. The experiment was conducted at a well- known training event in Thailand. The proposed two-factor system was evaluated in terms of accuracy and satisfaction. Additionally, it was compared to a traditional single-factor system using only face recognition. The results confirm that the proposed two-factor scheme is more effective and did not incorrectly identify any users.
2022-07-29
Li, Xianxian, Fu, Xuemei, Yu, Feng, Shi, Zhenkui, Li, Jie, Yang, Junhao.  2021.  A Private Statistic Query Scheme for Encrypted Electronic Medical Record System. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :1033—1039.
In this paper, we propose a scheme that supports statistic query and authorized access control on an Encrypted Electronic Medical Records Databases(EMDB). Different from other schemes, it is based on Differential-Privacy(DP), which can protect the privacy of patients. By deploying an improved Multi-Authority Attribute-Based Encryption(MA-ABE) scheme, all authorities can distribute their search capability to clients under different authorities without additional negotiations. To our best knowledge, there are few studies on statistical queries on encrypted data. In this work, we consider that support differentially-private statistical queries. To improve search efficiency, we leverage the Bloom Filter(BF) to judge whether the keywords queried by users exists. Finally, we use experiments to verify and evaluate the feasibility of our proposed scheme.
2022-08-26
Chinnasamy, P., Vinothini, B., Praveena, V., Subaira, A.S., Ben Sujitha, B..  2021.  Providing Resilience on Cloud Computing. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—4.
In Cloud Computing, a wide range of virtual platforms are integrated and offer users a flexible pay-as-you-need service. Compared to conventional computing systems, the provision of an acceptable degree of resilience to cloud services is a daunting challenge due to the complexities of the cloud environment and the need for efficient technology that could sustain cloud advantages over other technologies. For a cloud guest resilience service solution, we provide architectural design, installation specifics, and performance outcomes throughout this article. Virtual Machine Manager (VMM) enables execution statistical test of the virtual machine states to be monitored and avoids to reach faulty states.
2022-02-07
Liu, Jin-zhou.  2021.  Research on Network Big Data Security Integration Algorithm Based on Machine Learning. 2021 International Conference of Social Computing and Digital Economy (ICSCDE). :264–267.
In order to improve the big data management ability of IOT access control based on converged network structure, a security integration model of IOT access control based on machine learning and converged network structure is proposed. Combined with the feature analysis method, the storage structure allocation model is established, the feature extraction and fuzzy clustering analysis of big data are realized by using the spatial node rotation control, the fuzzy information fusion parameter analysis model is constructed, the frequency coupling parameter analysis is realized, the virtual inertia parameter analysis model is established, and the integrated processing of big data is realized according to the machine learning analysis results. The test results show that the method has good clustering effect, reduces the storage overhead, and improves the reliability management ability of big data.
2022-03-01
Sultan, Nazatul H., Varadharajan, Vijay, Kumar, Chandan, Camtepe, Seyit, Nepal, Surya.  2021.  A Secure Access and Accountability Framework for Provisioning Services in Named Data Networks. 2021 40th International Symposium on Reliable Distributed Systems (SRDS). :164–175.
Named Data Networking (NDN) is an emerging network architecture, which is built by keeping data as its pivotal point. The in-network cache, one of the important characteristics, makes data packets to be available from multiple locations on the Internet. Hence data access control and their enforcement mechanisms become even more critical in the NDNs. In this paper, we propose a novel encryption-based data access control scheme using Role-Based Encryption (RBE). The inheritance property of our scheme provides a natural way to achieve efficient data access control over hierarchical content. This in turn makes our scheme suitable for large scale real world content-centric applications and services such as Netflix. Further, the proposed scheme introduces an anonymous signature-based authentication mechanism to reject bogus data requests nearer to the source, thereby preventing them from entering the network. This in turn helps to mitigate better denial of service attacks. In addition, the signature mechanism supports unlinkability, which is essential to prevent leakages of individual user's access patterns. Another major feature of the proposed scheme is that it provides accountability of the Internet Service Providers (ISPs) using batch signature verification. Moreover, we have developed a transparent and secure dispute resolution and payment mechanism using smart-contract and blockchain technologies. We present a formal security analysis of our scheme to show it is provably secure against Chosen Plaintext Attacks. We also demonstrate that our scheme supports more functionalities than the existing schemes and its performance is better in terms of computation, communication and storage.
2022-04-01
Walid, Redwan, Joshi, Karuna P., Choi, Seung Geol.  2021.  Secure Cloud EHR with Semantic Access Control, Searchable Encryption and Attribute Revocation. 2021 IEEE International Conference on Digital Health (ICDH). :38—47.
To ensure a secure Cloud-based Electronic Health Record (EHR) system, we need to encrypt data and impose field-level access control to prevent malicious usage. Since the attributes of the Users will change with time, the encryption policies adopted may also vary. For large EHR systems, it is often necessary to search through the encrypted data in realtime and perform client-side computations without decrypting all patient records. This paper describes our novel cloud-based EHR system that uses Attribute Based Encryption (ABE) combined with Semantic Web technologies to facilitate differential access to an EHR, thereby ensuring only Users with valid attributes can access a particular field of the EHR. The system also includes searchable encryption using keyword index and search trapdoor, which allows querying EHR fields without decrypting the entire patient record. The attribute revocation feature is efficiently managed in our EHR by delegating the revision of the secret key and ciphertext to the Cloud Service Provider (CSP). Our methodology incorporates advanced security features that eliminate malicious use of EHR data and contributes significantly towards ensuring secure digital health systems on the Cloud.
2022-05-10
Zum Felde, Hendrik Meyer, Morbitzer, Mathias, Schütte, Julian.  2021.  Securing Remote Policy Enforcement by a Multi-Enclave based Attestation Architecture. 2021 IEEE 19th International Conference on Embedded and Ubiquitous Computing (EUC). :102–108.
The concept of usage control goes beyond traditional access control by regulating not only the retrieval but also the processing of data. To be able to remotely enforce usage control policy the processing party requires a trusted execution environ-ment such as Intel SGX which creates so-called enclaves. In this paper we introduce Multi Enclave based Code from Template (MECT), an SGX-based architecture for trusted remote policy enforcement. MECT uses a multi-enclave approach in which an enclave generation service dynamically generates enclaves from pre-defined code and dynamic policy parameters. This approach leads to a small trusted computing base and highly simplified attestation while preserving functionality benefits. Our proof of concept implementation consumes customisable code from templates. We compare the implementation with other architectures regarding the trusted computing base, flexibility, performance, and modularity. This comparison highlights the security benefits for remote attestation of MECT.
2022-06-08
Huang, Song, Yang, Zhen, Zheng, Changyou, Wan, Jinyong.  2021.  An Intellectual Property Data Access Control Method for Crowdsourced Testing System. 2021 8th International Conference on Dependable Systems and Their Applications (DSA). :434–438.

In the crowdsourced testing system, due to the openness of crowdsourced testing platform and other factors, the security of crowdsourced testing intellectual property cannot be effectively protected. We proposed an attribute-based double encryption scheme, combined with the blockchain technology, to achieve the data access control method of the code to be tested. It can meet the privacy protection and traceability of specific intellectual property in the crowdsourced testing environment. Through the experimental verification, the access control method is feasible, and the performance test is good, which can meet the normal business requirements.

2022-04-18
Miller, Lo\"ıc, Mérindol, Pascal, Gallais, Antoine, Pelsser, Cristel.  2021.  Verification of Cloud Security Policies. 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR). :1–5.

Companies like Netflix increasingly use the cloud to deploy their business processes. Those processes often involve partnerships with other companies, and can be modeled as workflows where the owner of the data at risk interacts with contractors to realize a sequence of tasks on the data to be secured.In practice, access control is an essential building block to deploy these secured workflows. This component is generally managed by administrators using high-level policies meant to represent the requirements and restrictions put on the workflow. Handling access control with a high-level scheme comes with the benefit of separating the problem of specification, i.e. defining the desired behavior of the system, from the problem of implementation, i.e. enforcing this desired behavior. However, translating such high-level policies into a deployed implementation can be error-prone.Even though semi-automatic and automatic tools have been proposed to assist this translation, policy verification remains highly challenging in practice. In this paper, our aim is to define and propose structures assisting the checking and correction of potential errors introduced on the ground due to a faulty translation or corrupted deployments. In particular, we investigate structures with formal foundations able to naturally model policies. Metagraphs, a generalized graph theoretic structure, fulfill those requirements: their usage enables to compare high-level policies to their implementation. In practice, we consider Rego, a language used by companies like Netflix and Plex for their release process, as a valuable representative of most common policy languages. We propose a suite of tools transforming and checking policies as metagraphs, and use them in a global framework to show how policy verification can be achieved with such structures. Finally, we evaluate the performance of our verification method.

2022-03-02
Tang, Fei, Jia, Hao, Shi, Linxin, Zheng, Minghong.  2021.  Information Security Protection of Power System Computer Network. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1226–1229.
With the reform of the power market(PM), various power applications based on computer networks have also developed. As a network application system supporting the operation of the PM, the technical support system(TSS) of the PM has become increasingly important for its network information security(NIS). The purpose of this article is to study the security protection of computer network information in power systems. This paper proposes an identity authentication algorithm based on digital signatures to verify the legitimacy of system user identities; on the basis of PMI, according to the characteristics of PM access control, a role-based access control model with time and space constraints is proposed, and a role-based access control model is designed. The access control algorithm based on the attribute certificate is used to manage the user's authority. Finally, according to the characteristics of the electricity market data, the data security transmission algorithm is designed and the feasibility is verified. This paper presents the supporting platform for the security test and evaluation of the network information system, and designs the subsystem and its architecture of the security situation assessment (TSSA) and prediction, and then designs the key technologies in this process in detail. This paper implements the subsystem of security situation assessment and prediction, and uses this subsystem to combine with other subsystems in the support platform to perform experiments, and finally adopts multiple manifestations, and the trend of the system's security status the graph is presented to users intuitively. Experimental studies have shown that the residual risks in the power system after implementing risk measures in virtual mode can reduce the risk value of the power system to a fairly low level by implementing only three reinforcement schemes.
2022-01-31
Abubakar, Mwrwan, Jaroucheh, Zakwan, Al Dubai, Ahmed, Buchanan, Bill.  2021.  A Decentralised Authentication and Access Control Mechanism for Medical Wearable Sensors Data. 2021 IEEE International Conference on Omni-Layer Intelligent Systems (COINS). :1—7.
Recent years have seen an increase in medical big data, which can be attributed to a paradigm shift experienced in medical data sharing induced by the growth of medical technology and the Internet of Things. The evidence of this potential has been proved during the recent covid-19 pandemic, which was characterised by the use of medical wearable devices to help with the medical data exchange between the healthcare providers and patients in a bid to contain the pandemic. However, the use of these technologies has also raised questions and concerns about security and privacy risks. To assist in resolving this issue, this paper proposes a blockchain-based access control framework for managing access to users’ medical data. This is facilitated by using a smart contract on the blockchain, which allows for delegated access control and secure user authentication. This solution leverages blockchain technology’s inherent autonomy and immutability to solve the existing access control challenges. We have presented the solution in the form of a medical wearable sensor prototype and a mobile app that uses the Ethereum blockchain in a real data sharing control scenario. Based on the empirical results, the proposed solution has proven effective. It has the potential to facilitate reliable data exchange while also protecting sensitive health information against potential threats. When subjected to security analysis and evaluation, the system exhibits performance improvements in data privacy levels, high security and lightweight access control design compared to the current centralised access control models.