Biblio

Found 342 results

Filters: Keyword is Access Control  [Clear All Filters]
2021-09-16
Choi, Nakhoon, Kim, Heeyoul.  2020.  Hybrid Blockchain-Based Unification ID in Smart Environment. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :166–170.
Recently, with the increase of smart factories, smart cities, and the 4th industrial revolution, internal user authentication is emerging as an important issue. The existing user authentication and Access Control architecture can use the centralized system to forge access history by the service manager, which can cause problems such as evasion of responsibility and internal corruption. In addition, the user must independently manage the ID or physical authentication medium for authentication of each service, it is difficult to manage the subscribed services. This paper proposes a Hybrid blockchain-based integrated ID model to solve the above problems. The user creates authentication information based on the electronic signature of the Ethereum Account, a public blockchain, and provides authentication to a service provider composed of a Hyperledger Fabric, a private blockchain. The service provider ensures the integrity of the information by recording the Access History and authentication information in the Internal-Ledger. Through the proposed architecture, we can integrate the physical pass or application for user authentication and authorization into one Unification ID. Service providers can prevent non-Repudiation of responsibility by recording their authority and access history in ledger.
2021-04-08
Deng, L., Luo, J., Zhou, J., Wang, J..  2020.  Identity-based Secret Sharing Access Control Framework for Information-Centric Networking. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :507–511.
Information-centric networking (ICN) has played an increasingly important role in the next generation network design. However, to make better use of request-response communication mode in the ICN network, revoke user privileges more efficiently and protect user privacy more safely, an effective access control mechanism is needed. In this paper, we propose IBSS (identity-based secret sharing), which achieves efficient content distribution by using improved Shamir's secret sharing method. At the same time, collusion attacks are avoided by associating polynomials' degree with the number of users. When authenticating user identity and transmitting content, IBE and IBS are introduced to achieve more efficient and secure identity encryption. From the experimental results, the scheme only introduces an acceptable delay in file retrieval, and it can request follow-up content very efficiently.
2021-05-03
Wu, Shanglun, Yuan, Yujie, Kar, Pushpendu.  2020.  Lightweight Verification and Fine-grained Access Control in Named Data Networking Based on Schnorr Signature and Hash Functions. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :1561–1566.
Named Data Networking (NDN) is a new kind of architecture for future Internet, which is exactly satisfied with the rapidly increasing mobile requirement and information-depended applications that dominate today's Internet. However, the current verification-data accessed system is not safe enough to prevent data leakage because no strongly method to resist any device or user to access it. We bring up a lightweight verification based on hash functions and a fine-grained access control based on Schnorr Signature to address the issue seamlessly. The proposed scheme is scalable and protect data confidentiality in a NDN network.
2021-07-07
Aski, Vidyadhar, Dhaka, Vijaypal Singh, Kumar, Sunil, Parashar, Anubha, Ladagi, Akshata.  2020.  A Multi-Factor Access Control and Ownership Transfer Framework for Future Generation Healthcare Systems. 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). :93–98.
The recent advancements in ubiquitous sensing powered by Wireless Computing Technologies (WCT) and Cloud Computing Services (CCS) have introduced a new thinking ability amongst researchers and healthcare professionals for building secure and connected healthcare systems. The integration of Internet of Things (IoT) in healthcare services further brings in several challenges with it, mainly including encrypted communication through vulnerable wireless medium, authentication and access control algorithms and ownership transfer schemes (important patient information). Major concern of such giant connected systems lies in creating the data handling strategies which is collected from the billions of heterogeneous devices distributed across the hospital network. Besides, the resource constrained nature of IoT would make these goals difficult to achieve. Motivated by aforementioned deliberations, this paper introduces a novel approach in designing a security framework for edge-computing based connected healthcare systems. An efficient, multi-factor access control and ownership transfer mechanism for edge-computing based futuristic healthcare applications is the core of proposed framework. Data scalability is achieved by employing distributed approach for clustering techniques that analyze and aggregate voluminous data acquired from heterogeneous devices individually before it transits the to the cloud. Moreover, data/device ownership transfer scheme is considered to be the first time in its kind. During ownership transfer phase, medical server facilitates user to transfer the patient information/ device ownership rights to the other registered users. In order to avoid the existing mistakes, we propose a formal and informal security analysis, that ensures the resistance towards most common IoT attacks such as insider attack, denial of distributed service (DDoS) attack and traceability attacks.
2021-04-27
Zhang, L., Su, J., Mu, Y..  2020.  Outsourcing Attributed-Based Ranked Searchable Encryption With Revocation for Cloud Storage. IEEE Access. 8:104344–104356.
With the rapid growth of the cloud computing and strengthening of security requirements, encrypted cloud services are of importance and benefit. For the huge ciphertext data stored in the cloud, many secure searchable methods based on cryptography with keywords are introduced. In all the methods, attribute-based searchable encryption is considered as the truthful and efficient method since it supports the flexible access policy. However, the attribute-based system suffers from two defects when applied in the cloud storage. One of them is that the huge data in the cloud makes the users process all the relevant files related to the certain keyword. For the other side, the users and users' attributes inevitably change frequently. Therefore, attribute revocation is also an important problem in the system. To overcome these drawbacks, an attribute-based ranked searchable encryption scheme with revocation is proposed. We rank the ciphertext documents according to the TF×IDF principle, and then only return the relevant top-k files. Besides the decryption sever, an encryption sever is also introduced. And a large number of computations are outsourced to the encryption server and decryption server, which reduces the computing overhead of the client. In addition, the proposed scheme uses a real-time revocation method to achieve attribute revocation and delegates most of the update tasks to the cloud, which also reduces the calculation overhead of the user side. The performance evaluations show the scheme is feasible and more efficient than the available ones.
2021-03-22
Wang, Z., Chen, L..  2020.  Re-encrypted Data Access Control Scheme Based on Blockchain. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1757–1764.
Nowadays, massive amounts of data are stored in the cloud, how to access control the cloud data has become a prerequisite for protecting the security of cloud data. In order to address the problems of centralized control and privacy protection in current access control, we propose an access control scheme based on the blockchain and re-encryption technology, namely PERBAC-BC scheme. The access control policy is managed by the decentralized and immutability characteristics of blockchain, while the re-encryption is protected by the trusted computing characteristic of blockchain and the privacy is protected by the identity re-encryption technology. The overall structure diagram and detailed execution flow of the scheme are given in this paper. Experimental results show that, compared with the traditional hybrid encryption scheme, the time and space consumption is less when the system is expanded. Then, the time and space performance of each part of the scheme is simulated, and the security of blockchain is proved. The results also show that the time and space performance of the scheme are better and the security is stronger, which has certain stability and expandability.
2021-05-13
Kayes, A.S.M., Hammoudeh, Mohammad, Badsha, Shahriar, Watters, Paul A., Ng, Alex, Mohammed, Fatma, Islam, Mofakharul.  2020.  Responsibility Attribution Against Data Breaches. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). :498–503.
Electronic crimes like data breaches in healthcare systems are often a fundamental failures of access control mechanisms. Most of current access control systems do not provide an accessible way to engage users in decision making processes, about who should have access to what data and when. We advocate that a policy ontology can contribute towards the development of an effective access control system by attributing responsibility for data breaches. We propose a responsibility attribution model as a theoretical construct and discuss its implication by introducing a cost model for data breach countermeasures. Then, a policy ontology is presented to realize the proposed responsibility and cost models. An experimental study on the performance of the proposed framework is conducted with respect to a more generic access control framework. The practicality of the proposed solution is demonstrated through a case study from the healthcare domain.
2021-02-23
Mendiboure, L., Chalouf, M. A., Krief, F..  2020.  A Scalable Blockchain-based Approach for Authentication and Access Control in Software Defined Vehicular Networks. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—11.
Software Defined Vehicular Networking (SDVN) could be the future of the vehicular networks, enabling interoperability between heterogeneous networks and mobility management. Thus, the deployment of large SDVN is considered. However, SDVN is facing major security issues, in particular, authentication and access control issues. Indeed, an unauthorized SDN controller could modify the behavior of switches (packet redirection, packet drops) and an unauthorized switch could disrupt the operation of the network (reconnaissance attack, malicious feedback). Due to the SDVN features (decentralization, mobility) and the SDVN requirements (flexibility, scalability), the Blockchain technology appears to be an efficient way to solve these authentication and access control issues. Therefore, many Blockchain-based approaches have already been proposed. However, two key challenges have not been addressed: authentication and access control for SDN controllers and high scalability for the underlying Blockchain network. That is why in this paper we propose an innovative and scalable architecture, based on a set of interconnected Blockchain sub-networks. Moreover, an efficient access control mechanism and a cross-sub-networks authentication/revocation mechanism are proposed for all SDVN devices (vehicles, roadside equipment, SDN controllers). To demonstrate the benefits of our approach, its performances are compared with existing solutions in terms of throughput, latency, CPU usage and read/write access to the Blockchain ledger. In addition, we determine an optimal number of Blockchain sub-networks according to different parameters such as the number of certificates to store and the number of requests to process.
2021-05-03
Takita, Yutaka, Miyabe, Masatake, Tomonaga, Hiroshi, Oguchi, Naoki.  2020.  Scalable Impact Range Detection against Newly Added Rules for Smart Network Verification. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1471–1476.
Technological progress in cloud networking, 5G networks, and the IoT (Internet of Things) are remarkable. In addition, demands for flexible construction of SoEs (Systems on Engagement) for various type of businesses are increasing. In such environments, dynamic changes of network rules, such as access control (AC) or packet forwarding, are required to ensure function and security in networks. On the other hand, it is becoming increasingly difficult to grasp the exact situation in such networks by utilizing current well-known network verification technologies since a huge number of network rules are complexly intertwined. To mitigate these issues, we have proposed a scalable network verification approach utilizing the concept of "Packet Equivalence Class (PEC)," which enable precise network function verification by strictly recognizing the impact range of each network rule. However, this approach is still not scalable for very large-scale networks which consist of tens of thousands of routers. In this paper, we enhanced our impact range detection algorithm for practical large-scale networks. Through evaluation in the network with more than 80,000 AC rules, we confirmed that our enhanced algorithm can achieve precise impact range detection in under 600 seconds.
2021-01-18
Singh, G., Garg, S..  2020.  Fuzzy Elliptic Curve Cryptography based Cipher Text Policy Attribute based Encryption for Cloud Security. 2020 International Conference on Intelligent Engineering and Management (ICIEM). :327–330.

Cipher Text Policy Attribute Based Encryption which is a form of Public Key Encryption has become a renowned approach as a Data access control scheme for data security and confidentiality. It not only provides the flexibility and scalability in the access control mechanisms but also enhances security by fuzzy fined-grained access control. However, schemes are there which for more security increases the key size which ultimately leads to high encryption and decryption time. Also, there is no provision for handling the middle man attacks during data transfer. In this paper, a light-weight and more scalable encryption mechanism is provided which not only uses fewer resources for encoding and decoding but also improves the security along with faster encryption and decryption time. Moreover, this scheme provides an efficient key sharing mechanism for providing secure transfer to avoid any man-in-the-middle attacks. Also, due to fuzzy policies inclusion, chances are there to get approximation of user attributes available which makes the process fast and reliable and improves the performance of legitimate users.

2021-09-16
Sun, Jin, Yao, Xiaomin, Wang, Shangping, Wu, Ying.  2020.  Non-Repudiation Storage and Access Control Scheme of Insurance Data Based on Blockchain in IPFS. IEEE Access. 8:155145–155155.
The insurance business plays a quite significant role in people's lives, but in the process of claim settlement, there are still various frauds such that the insurance companies' refusal to compensate or customers' malicious fraud to obtain compensation. Therefore, it is very important to ensure fair and just claims. In this paper, by combining the blockchain technology and the ciphertext-policy attribute-based encryption system, we build a scheme for secure storage and update for insurance records under the InterPlanetary File System (IPFS) storage environment in the insurance system. In this scheme, we use the fog node to outsource encryption of insurance records to improve the efficiency of the staff; In addition, we store encrypted insurance records on IPFS to ensure the security of the storage platform and avoid the single point failure of the centralized mechanism. In addition, we use the immutability of the blockchain to achieve the non-repudiation of both insurance companies and the client. The security proof shows that the proposed scheme can achieve selective security against selected keyword attacks. Our scheme is efficient and feasible under performance analysis and real data set experiments.
2021-06-28
Mounnan, Oussama, Mouatasim, Abdelkrim El, Manad, Otman, Hidar, Tarik, El Kalam, Anas Abou, Idboufker, Noureddine.  2020.  Privacy-Aware and Authentication based on Blockchain with Fault Tolerance for IoT enabled Fog Computing. 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC). :347–352.
Fog computing is a new distributed computing paradigm that extends the cloud to the network edge. Fog computing aims at improving quality of service, data access, networking, computation and storage. However, the security and privacy issues persist, even if many cloud solutions were proposed. Indeed, Fog computing introduces new challenges in terms of security and privacy, due to its specific features such as mobility, geo-distribution and heterogeneity etc. Blockchain is an emergent concept bringing efficiency in many fields. In this paper, we propose a new access control scheme based on blockchain technology for the fog computing with fault tolerance in the context of the Internet of Things. Blockchain is used to provide secure management authentication and access process to IoT devices. Each network entity authenticates in the blockchain via the wallet, which allows a secure communication in decentralized environment, hence it achieves the security objectives. In addition, we propose to establish a secure connection between the users and the IoT devices, if their attributes satisfy the policy stored in the blockchain by smart contract. We also address the blockchain transparency problem by the encryption of the users attributes both in the policy and in the request. An authorization token is generated if the encrypted attributes are identical. Moreover, our proposition offers higher scalability, availability and fault tolerance in Fog nodes due to the implementation of load balancing through the Min-Min algorithm.
2021-10-04
Lovetsky, I.V., Bukvina, E.A., Ponomarchuk, Y.V..  2020.  On Providing Information Security for Decentralized Databases. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1–5.
The paper discusses a prototype of a database, which can be used for operation in a decentralized mode for an information system. In this project, the focus is on creation of a data structure model that provides flexibility of business processes. The research is based on the development of a model for decentralized access rights distribution by including users in groups where they are assigned similar roles using consensus of other group members. This paper summarizes the main technologies that were used to ensure information security of the decentralized storage, the mechanisms for fixing access rights to an object access (the minimum entity of the system), describes a process of the data access control at the role level and an algorithm for managing the consensus for applying changes.
2021-03-09
Ishak, Z., Rajendran, N., Al-Sanjary, O. I., Razali, N. A. Mat.  2020.  Secure Biometric Lock System for Files and Applications: A Review. 2020 16th IEEE International Colloquium on Signal Processing Its Applications (CSPA). :23–28.

A biometric system is a developing innovation which is utilized in different fields like forensics and security system. Finger recognition is the innovation that confirms the personality of an individual which relies upon the way that everybody has unique fingerprints. Fingerprint biometric systems are smaller in size, simple to utilize and have low power. This proposed study focuses on fingerprint biometric systems and how such a system would be implemented. If implemented, this system would have multifactor authentication strategies and improvised features based on encryption algorithms. The scanner that will be used is Biometric Fingerprint Sensor that is connected to system which determines the authorization and access control rights. All user access information is gathered by the system where the administrators can retrieve and analyse the information. This system has function of being up to date with the data changes like displaying the name of the individual for controlling security of the system.

2020-04-06
Alamleh, Hosam, AlQahtani, Ali Abdullah S..  2020.  Two Methods for Authentication Using Variable Transmission Power Patterns. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0355–0358.
In the last decade, the adoption of wireless systems has increased. These systems allow multiple devices to send data wirelessly using radio waves. Moreover, in some applications, authentication is done wirelessly by exchanging authentication data over the air as in wireless locks and keyless entry systems. On the other hand, most of the wireless devices today can control the radio frequency transmission power to optimize the system's performance and minimize interference. In this paper, we explore the possibility of modulating the radio frequency transmission power in wireless systems for authentication purposes and using it for source authentication. Furthermore, we propose two system models that perform authentication using variable power transmission patterns. Then, we discuss possible applications. Finally, we implement and test a prototype system using IEEE 802.11 (Wi-Fi) devices.
2021-03-29
Amin, A. H. M., Abdelmajid, N., Kiwanuka, F. N..  2020.  Identity-of-Things Model using Composite Identity on Permissioned Blockchain Network. 2020 Seventh International Conference on Software Defined Systems (SDS). :171—176.

The growing prevalence of Internet-of-Things (IoT) technology has led to an increase in the development of heterogeneous smart applications. Smart applications may involve a collaborative participation between IoT devices. Participation of IoT devices for specific application requires a tamper-proof identity to be generated and stored, in order to completely represent the device, as well as to eliminate the possibility of identity spoofing and presence of rogue devices in a network. In this paper, we present a composite Identity-of-Things (IDoT) approach on IoT devices with permissioned blockchain implementation for distributed identity management model. Our proposed approach considers both application and device domains in generating the composite identity. In addition, the use of permissioned blockchain for identity storage and verification allows the identity to be immutable. A simulation has been carried out to demonstrate the application of the proposed identity management model.

2021-04-08
Ameer, S., Benson, J., Sandhu, R..  2020.  The EGRBAC Model for Smart Home IoT. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :457–462.
The Internet of Things (IoT) is enabling smart houses, where multiple users with complex social relationships interact with smart devices. This requires sophisticated access control specification and enforcement models, that are currently lacking. In this paper, we introduce the extended generalized role based access control (EGRBAC) model for smart home IoT. We provide a formal definition for EGRBAC and illustrate its features with a use case. A proof-of-concept demonstration utilizing AWS-IoT Greengrass is discussed in the appendix. EGRBAC is a first step in developing a comprehensive family of access control models for smart home IoT.
2021-08-31
Hong, Yaoqiu.  2020.  Design of Intelligent Access Control System Based on DES Encrypted QR Code. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :1005—1008.
In order to solve the problems of inconvenient carrying and management of the access card used in the existing market access control system, a set of intelligent access control system based on DES encrypted two-dimensional code is designed. The system consists of Android smart phone, embedded access controller and server. By sending and receiving QR code via smart phone, access to the door is obtained, which realizes centralized management of office buildings, companies, senior office buildings, luxury residences and other middle and high-rise places, effectively preventing unauthorized people from entering the high security area. In order to ensure information security, the two-dimensional code is encrypted by DES algorithm. This system has the characteristics of low cost, high security and flexible operation. It is still blank in the application field and has certain promotion value.
2021-06-24
Jang, Dongsoo, Shin, Michael, Pathirage, Don.  2020.  Security Fault Tolerance for Access Control. 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :212—217.
This paper describes an approach to the security fault tolerance of access control in which the security breaches of an access control are tolerated by means of a security fault tolerant (SFT) access control. Though an access control is securely designed and implemented, it can contain faults in development or be contaminated in operation. The threats to an access control are analyzed to identify possible security breaches. To tolerate the security breaches, an SFT access control is made to be semantically identical to an access control. Our approach is described using role-based access control (RBAC) and extended access control list (EACL). A healthcare system is used to demonstrate our approach.
2021-10-12
Jayabalan, Manoj.  2020.  Towards an Approach of Risk Analysis in Access Control. 2020 13th International Conference on Developments in eSystems Engineering (DeSE). :287–292.
Information security provides a set of mechanisms to be implemented in the organisation to protect the disclosure of data to the unauthorised person. Access control is the primary security component that allows the user to authorise the consumption of resources and data based on the predefined permissions. However, the access rules are static in nature, which does not adapt to the dynamic environment includes but not limited to healthcare, cloud computing, IoT, National Security and Intelligence Arena and multi-centric system. There is a need for an additional countermeasure in access decision that can adapt to those working conditions to assess the threats and to ensure privacy and security are maintained. Risk analysis is an act of measuring the threats to the system through various means such as, analysing the user behaviour, evaluating the user trust, and security policies. It is a modular component that can be integrated into the existing access control to predict the risk. This study presents the different techniques and approaches applied for risk analysis in access control. Based on the insights gained, this paper formulates the taxonomy of risk analysis and properties that will allow researchers to focus on areas that need to be improved and new features that could be beneficial to stakeholders.
2021-04-27
Alniamy, A. M., Liu, H..  2020.  Blockchain-Based Secure Collaboration Platform for Sharing and Accessing Scientific Research Data. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :34—40.
Research teams or institutions in different countries need an effective and secure online platform for collaboration and data sharing. It is essential to build such a collaboration platform with strong data security and privacy. In this paper, we propose a platform for researchers to collaborate and share their data by leveraging attribute-based access control (ABAC) and blockchain technologies. ABAC provides an access control paradigm whereby access rights are granted to users through attribute-based policies, instead of user identities and roles. Hyperledger fabric permission blockchain is used to enable a decentralized secure data sharing environment and preserves user’s privacy. The proposed platform allows researchers to fully control their data, manage access to the data at a fine-grained level, keep file updates with proof of authorship, and ensure data integrity and privacy.
2021-07-08
Raja, S. Kanaga Suba, Sathya, A., Priya, L..  2020.  A Hybrid Data Access Control Using AES and RSA for Ensuring Privacy in Electronic Healthcare Records. 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). :1—5.
In the current scenario, the data owners would like to access data from anywhere and anytime. Hence, they will store their data in public or private cloud along with encryption and particular set of attributes to access control on the cloud data. While uploading the data into public or private cloud they will assign some attribute set to their data. If any authorized cloud user wants to download their data they should enter that particular attribute set to perform further actions on the data owner's data. A cloud user wants to register their details under cloud organization to access the data owner's data. Users wants to submit their details as attributes along with their designation. Based on the Users details Semi-Trusted Authority generates decryption keys to get control on owner's data. A user can perform a lot of operation over the cloud data. If the user wants to read the cloud data he needs to be entering some read related, and if he wants to write the data he needs to be entering write related attribute. For each and every action user in an organization would be verified with their unique attribute set. These attributes will be stored by the admins to the authorized users in cloud organization. These attributes will be stored in the policy files in a cloud. Along with this attribute,a rule based engine is used, to provide the access control to user. If any user leaks their decryption key to the any malicious user data owners wants to trace by sending audit request to auditor and auditor will process the data owners request and concludes that who is the convict.
2021-08-17
Wang, Zicheng, Cui, Bo.  2020.  An Enhanced System for Smart Home in IPv6-Based Wireless Home Network. 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC). :119–122.
The development of IPv6-based wireless local area networks is becoming increasingly mature, and it has defined no less than different standards to meet the needs of different applications. Wireless home networks are widely used because they can be seamlessly connected to daily life, especially smart home devices linked to it. There are certain security issues with smart home devices deployed in wireless home networks, such as data tampering and leakage of sensitive information. This paper proposes a smart home management system based on IPv6 wireless home network, and develops a prototype system deployed on mobile portable devices. Through this system, different roles in the wireless home network can be dynamically authorized and smart home resources can be allocated to achieve the purpose of access control and management.
2021-05-26
Ghosh, Bedatrayee, Parimi, Priyanka, Rout, Rashmi Ranjan.  2020.  Improved Attribute-Based Encryption Scheme in Fog Computing Environment for Healthcare Systems. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.

In today's smart healthcare system, medical records of patients are exposed to a large number of users for various purposes, from monitoring the patients' health to data analysis. Preserving the privacy of a patient has become an important and challenging issue. outsourced Ciphertext-Policy Attribute-Based Encryption (CP-ABE) provides a solution for the data sharing and privacy preservation problem in the healthcare system in fog environment. However, the high computational cost in case of frequent attribute updates renders it infeasible for providing access control in healthcare systems. In this paper, we propose an efficient method to overcome the frequent attribute update problem of outsourced CP-ABE. In our proposed approach, we generate two keys for each user (a static key and a dynamic key) based on the constant and changing attributes of the users. Therefore, in case of an attribute change for a user, only the dynamic key is updated. Also, the key update is done at the fog nodes without compromising the security of the system. Thus, both the communication and the computational overhead associated with the key update in the outsourced CP-ABE scheme are reduced, making it an ideal solution for data access control in healthcare systems. The efficacy of our proposed approach is shown through theoretical analysis and experimentation.

2021-06-02
Priyanka, J., Rajeshwari, K.Raja, Ramakrishnan, M..  2020.  Operative Access Regulator for Attribute Based Generalized Signcryption Using Rough Set Theory. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :458—460.
The personal health record has been shared and preserved easily with cloud core storage. Privacy and security have been one of the main demerits of core CloudHealthData storage. By increasing the security concerns in this paper experimented Operative Access Regulator for Attribute Based Generalized Signcryption Using rough set theory. By using rough set theory, the classifications of the attribute have been improved as well as the compulsory attribute has been formatted for decrypting process by using reduct and core. The Generalized signcryption defined priority wise access to diminish the cost and rise the effectiveness of the proposed model. The PHR has been stored under the access priorities of Signature only, encryption only and signcryption only mode. The proposed ABGS performance fulfills the secrecy, authentication and also other security principles.