Biblio
Filters: First Letter Of Title is C [Clear All Filters]
Construction of immersive architectural wisdom guiding environment based on virtual reality. 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). :1464–1467.
.
2021. Construction of immersive architectural wisdom guiding environment based on virtual reality is studied in this paper. Emerging development of the computer smart systems have provided the engineers a novel solution for the platform construction. Network virtualization is currently the most unclear and controversial concept in the industry regarding the definition of virtualization subdivisions. To improve the current study, we use the VR system to implement the platform. The wisdom guiding environment is built through the virtual data modelling and the interactive connections. The platform is implemented through the software. The test on the data analysis accuracy and the interface optimization is conducted.
Construction of immersive scene roaming system of exhibition hall based on virtual reality technology. 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :1029–1033.
.
2021. On the basis of analyzing the development and application of virtual reality (VR) technology at home and abroad, and combining with the specific situation of the exhibition hall, this paper establishes an immersive scene roaming system of the exhibition hall. The system is completed by virtual scene modeling technology and virtual roaming interactive technology. The former uses modeling software to establish the basic model in the virtual scene, while the latter uses VR software to enable users to control their own roles to run smoothly in the roaming scene. In interactive roaming, this paper optimizes the A* pathfinding algorithm, uses binary heap to process data, and on this basis, further optimizes the pathfinding algorithm, so that when the pathfinding target is an obstacle, the pathfinder can reach the nearest place to the obstacle. Texture mapping technology, LOD technology and other related technologies are adopted in the modeling, thus finally realizing the immersive scene roaming system of the exhibition hall.
Construction of information security risk assessment model based on static game. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT). :647–650.
.
2021. Game theory is a branch of modern mathematics, which is a mathematical method to study how decision-makers should make decisions in order to strive for the maximum interests in the process of competition. In this paper, from the perspective of offensive and defensive confrontation, using game theory for reference, we build a dynamic evaluation model of information system security risk based on static game model. By using heisani transformation, the uncertainty of strategic risk of offensive and defensive sides is transformed into the uncertainty of each other's type. The security risk of pure defense strategy and mixed defense strategy is analyzed quantitatively, On this basis, an information security risk assessment algorithm based on static game model is designed.
Construction of Network Security Perception System Using Elman Neural Network. 2021 2nd International Conference on Computer Communication and Network Security (CCNS). :187—190.
.
2021. The purpose of the study is to improve the security of the network, and make the state of network security predicted in advance. First, the theory of neural networks is studied, and its shortcomings are analyzed by the standard Elman neural network. Second, the layers of the feedback nodes of the Elman neural network are improved according to the problems that need to be solved. Then, a network security perception system based on GA-Elman (Genetic Algorithm-Elman) neural network is proposed to train the network by global search method. Finally, the perception ability is compared and analyzed through the model. The results show that the model can accurately predict network security based on the experimental charts and corresponding evaluation indexes. The comparative experiments show that the GA-Elman neural network security perception system has a better prediction ability. Therefore, the model proposed can be used to predict the state of network security and provide early warnings for network security administrators.
Container-based Service State Management in Cloud Computing. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :487—493.
.
2021. In a cloud data center, the client requests are catered by placing the services in its servers. Such services are deployed through a sandboxing platform to ensure proper isolation among services from different users. Due to the lightweight nature, containers have become increasingly popular to support such sandboxing. However, for supporting effective and efficient data center resource usage with minimum resource footprints, improving the containers' consolidation ratio is significant for the cloud service providers. Towards this end, in this paper, we propose an exciting direction to significantly boost up the consolidation ratio of a data-center environment by effectively managing the containers' states. We observe that many cloud-based application services are event-triggered, so they remain inactive unless some external service request comes. We exploit the fact that the containers remain in an idle state when the underlying service is not active, and thus such idle containers can be checkpointed unless an external service request comes. However, the challenge here is to design an efficient mechanism such that an idle container can be resumed quickly to prevent the loss of the application's quality of service (QoS). We have implemented the system, and the evaluation is performed in Amazon Elastic Compute Cloud. The experimental results have shown that the proposed algorithm can manage the containers' states, ensuring the increase of consolidation ratio.
Contour Based Deep Learning Engine to Solve CAPTCHA. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:723—727.
.
2021. A 'Completely Automated Public Turing test to tell Computers and Humans Apart' or better known as CAPTCHA is a image based test used to determine the authenticity of a user (ie. whether the user is human or not). In today's world, almost all the web services, such as online shopping sites, require users to solve CAPTCHAs that must be read and typed correctly. The challenge is that recognizing the CAPTCHAs is a relatively easy task for humans, but it is still hard to solve for computers. Ideally, a well-designed CAPTCHA should be solvable by humans at least 90% of the time, while programs using appropriate resources should succeed in less than 0.01% of the cases. In this paper, a deep neural network architecture is presented to extract text from CAPTCHA images on various platforms. The central theme of the paper is to develop an efficient & intelligent model that converts image-based CAPTCHA to text. We used convolutional neural network based architecture design instead of the traditional methods of CAPTCHA detection using image processing segmentation modules. The model consists of seven layers to efficiently correlate image features to the output character sequence. We tried a wide variety of configurations, including various loss and activation functions. We generated our own images database and the efficacy of our model was proven by the accuracy levels of 99.7%.
Controller of public vehicles and traffic lights to speed up the response time to emergencies. 2021 XVII International Engineering Congress (CONIIN). :1–6.
.
2021. Frequently emergency services are required nationally and globally, in Mexico during 2020 of the 16,22,879 calls made to 911, statistics reveal that 58.43% were about security, 16.57% assistance, 13.49% medical, 6.29% civil protection, among others. However, the constant traffic of cities generates delays in the time of arrival to medical, military or civil protection services, wasting time that can be critical in an emergency. The objective is to create a connection between the road infrastructure (traffic lights) and emergency vehicles to reduce waiting time as a vehicle on a mission passes through a traffic light with Controller Area Network CAN controller to modify the color and give way to the emergency vehicle that will send signals to the traffic light controller through a controller located in the car. For this, the Controller Area Network Flexible Data (CAN-FD) controllers will be used in traffic lights since it is capable of synchronizing data in the same bus or cable to avoid that two messages arrive at the same time, which could end in car accidents if they are not it respects a hierarchy and the CANblue ll controller that wirelessly connects devices (vehicle and traffic light) at a speed of 1 Mbit / s to avoid delays in data exchange taking into account the high speeds that a car can acquire. It is intended to use the CAN controller for the development of improvements in response times in high-speed data exchange in cities with high traffic flow. As a result of the use of CAN controllers, a better data flow and interconnection is obtained.
Convergence of Cloud and Fog Computing for Security Enhancement. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1—6.
.
2021. Cloud computing is a modern type of service that provides each consumer with a large-scale computing tool. Different cyber-attacks can potentially target cloud computing systems, as most cloud computing systems offer services to so many people who are not known to be trustworthy. Therefore, to protect that Virtual Machine from threats, a cloud computing system must incorporate some security monitoring framework. There is a tradeoff between the security level of the security system and the performance of the system in this scenario. If a strong security is required then a stronger security service using more rules or patterns should be incorporated and then in proportion to the strength of security, it needs much more computing resources. So the amount of resources allocated to customers is decreasing so this research work will introduce a new way of security system in cloud environments to the VM in this research. The main point of Fog computing is to part of the cloud server's work in the ongoing study tells the step-by-step cloud server to change gigantic information measurement because the endeavor apps are relocated to the cloud to keep the framework cost. So the cloud server is devouring and changing huge measures of information step by step so it is rented to keep up the problem and additionally get terrible reactions in a horrible device environment. Cloud computing and Fog computing approaches were combined in this paper to review data movement and safe information about MDHC.
Convolutional Compaction-Based MRAM Fault Diagnosis. 2021 IEEE European Test Symposium (ETS). :1–6.
.
2021. Spin-transfer torque magnetoresistive random-access memories (STT-MRAMs) are gradually superseding conventional SRAMs as last-level cache in System-on-Chip designs. Their manufacturing process includes trimming a reference resistance in STT-MRAM modules to reliably determine the logic values of 0 and 1 during read operations. Typically, an on-chip trimming routine consists of multiple runs of a test algorithm with different settings of a trimming port. It may inherently produce a large number of mismatches. Diagnosis of such a sizeable volume of errors by means of existing memory built-in self-test (MBIST) schemes is either infeasible or a time-consuming and expensive process. In this paper, we propose a new memory fault diagnosis scheme capable of handling STT-MRAM-specific error rates in an efficient manner. It relies on a convolutional reduction of memory outputs and continuous shifting of the resultant data to a tester through a few output channels that are typically available in designs using an on-chip test compression technology, such as the embedded deterministic test. It is shown that processing the STT-MRAM output by using a convolutional compactor is a preferable solution for this type of applications, as it provides a high diagnostic resolution while incurring a low hardware overhead over traditional MBIST logic.
Convolutional Neural Network Based Approach for Static Security Assessment of Power Systems. 2021 World Automation Congress (WAC). :106–110.
.
2021. Steady-state response of the grid under a predefined set of credible contingencies is an important component of power system security assessment. With the growing complexity of electrical networks, fast and reliable methods and tools are required to effectively assist transmission grid operators in making decisions concerning system security procurement. In this regard, a Convolutional Neural Network (CNN) based approach to develop prediction models for static security assessment under N-1 contingency is investigated in this paper. The CNN model is trained and applied to classify the security status of a sample system according to given node voltage magnitudes, and active and reactive power injections at network buses. Considering a set of performance metrics, the superior performance of the CNN alternative is demonstrated by comparing the obtained results with a support vector machine classifier algorithm.
Cooperative Machine Learning Techniques for Cloud Intrusion Detection. 2021 International Wireless Communications and Mobile Computing (IWCMC). :837–842.
.
2021. Cloud computing is attracting a lot of attention in the past few years. Although, even with its wide acceptance, cloud security is still one of the most essential concerns of cloud computing. Many systems have been proposed to protect the cloud from attacks using attack signatures. Most of them may seem effective and efficient; however, there are many drawbacks such as the attack detection performance and the system maintenance. Recently, learning-based methods for security applications have been proposed for cloud anomaly detection especially with the advents of machine learning techniques. However, most researchers do not consider the attack classification which is an important parameter for proposing an appropriate countermeasure for each attack type. In this paper, we propose a new firewall model called Secure Packet Classifier (SPC) for cloud anomalies detection and classification. The proposed model is constructed based on collaborative filtering using two machine learning algorithms to gain the advantages of both learning schemes. This strategy increases the learning performance and the system's accuracy. To generate our results, a publicly available dataset is used for training and testing the performance of the proposed SPC. Our results show that the accuracy of the SPC model increases the detection accuracy by 20% compared to the existing machine learning algorithms while keeping a high attack detection rate.
Corner Case Data Description and Detection. 2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for AI (WAIN). :19–26.
.
2021. As the major factors affecting the safety of deep learning models, corner cases and related detection are crucial in AI quality assurance for constructing safety- and security-critical systems. The generic corner case researches involve two interesting topics. One is to enhance DL models' robustness to corner case data via the adjustment on parameters/structure. The other is to generate new corner cases for model retraining and improvement. However, the complex architecture and the huge amount of parameters make the robust adjustment of DL models not easy, meanwhile it is not possible to generate all real-world corner cases for DL training. Therefore, this paper proposes a simple and novel approach aiming at corner case data detection via a specific metric. This metric is developed on surprise adequacy (SA) which has advantages on capture data behaviors. Furthermore, targeting at characteristics of corner case data, three modifications on distanced-based SA are developed for classification applications in this paper. Consequently, through the experiment analysis on MNIST data and industrial data, the feasibility and usefulness of the proposed method on corner case data detection are verified.
Co-training For Image-Based Malware Classification. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :568–572.
.
2021. A malware detection model based on semi-supervised learning is proposed in the paper. Our model includes mainly three parts: malware visualization, feature extraction, and classification. Firstly, the malware visualization converts malware into grayscale images; then the features of the images are extracted to reflect the coding patterns of malware; finally, a collaborative learning model is applied to malware detections using both labeled and unlabeled software samples. The proposed model was evaluated based on two commonly used benchmark datasets. The results demonstrated that compared with traditional methods, our model not only reduced the cost of sample labeling but also improved the detection accuracy through incorporating unlabeled samples into the collaborative learning process, thereby achieved higher classification performance.
Countering Concurrent Login Attacks in “Just Tap” Push-based Authentication: A Redesign and Usability Evaluations. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :21—36.
.
2021. In this paper, we highlight a fundamental vulnerability associated with the widely adopted “Just Tap” push-based authentication in the face of a concurrency attack, and propose the method REPLICATE, a redesign to counter this vulnerability. In the concurrency attack, the attacker launches the login session at the same time the user initiates a session, and the user may be fooled, with high likelihood, into accepting the push notification which corresponds to the attacker's session, thinking it is their own. The attack stems from the fact that the login notification is not explicitly mapped to the login session running on the browser in the Just Tap approach. REPLICATE attempts to address this fundamental flaw by having the user approve the login attempt by replicating the information presented on the browser session over to the login notification, such as by moving a key in a particular direction, choosing a particular shape, etc. We report on the design and a systematic usability study of REPLICATE. Even without being aware of the vulnerability, in general, participants placed multiple variants of REPLICATE in competition to the Just Tap and fairly above PIN-based authentication.
Covert Channel-Based Transmitter Authentication in Controller Area Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
.
2021. In recent years, the security of automotive Cyber-Physical Systems (CPSs) is facing urgent threats due to the widespread use of legacy in-vehicle communication systems. As a representative legacy bus system, the Controller Area Network (CAN) hosts Electronic Control Units (ECUs) that are crucial for the vehicles functioning. In this scenario, malicious actors can exploit the CAN vulnerabilities, such as the lack of built-in authentication and encryption schemes, to launch CAN bus attacks. In this paper, we present TACAN (Transmitter Authentication in CAN), which provides secure authentication of ECUs on the legacy CAN bus by exploiting the covert channels. TACAN turns upside-down the originally malicious concept of covert channels and exploits it to build an effective defensive technique that facilitates transmitter authentication. TACAN consists of three different covert channels: 1) Inter-Arrival Time (IAT)-based, 2) Least Significant Bit (LSB)-based, and 3) hybrid covert channels. In order to validate TACAN, we implement the covert channels on the University of Washington (UW) EcoCAR (Chevrolet Camaro 2016) testbed. We further evaluate the bit error, throughput, and detection performance of TACAN through extensive experiments using the EcoCAR testbed and a publicly available dataset collected from Toyota Camry 2010.
Conference Name: IEEE Transactions on Dependable and Secure Computing
Covert Identification Over Binary-Input Discrete Memoryless Channels. IEEE Transactions on Information Theory. 67:5387–5403.
.
2021. This paper considers the covert identification problem in which a sender aims to reliably convey an identification (ID) message to a set of receivers via a binary-input discrete memoryless channel (BDMC), and simultaneously to guarantee that the communication is covert with respect to a warden who monitors the communication via another independent BDMC. We prove a square-root law for the covert identification problem. This states that an ID message of size exp(exp($\Theta$($\surd$ n)) can be transmitted over n channel uses. We then characterize the exact pre-constant in the $\Theta$($\cdot$) notation. This constant is referred to as the covert identification capacity. We show that it equals the recently developed covert capacity in the standard covert communication problem, and somewhat surprisingly, the covert identification capacity can be achieved without any shared key between the sender and receivers. The achievability proof relies on a random coding argument with pulse-position modulation (PPM), coupled with a second stage which performs code refinements. The converse proof relies on an expurgation argument as well as results for channel resolvability with stringent input constraints.
Conference Name: IEEE Transactions on Information Theory
Covert Wireless Communications Under Quasi-Static Fading With Channel Uncertainty. IEEE Transactions on Information Forensics and Security. 16:1104–1116.
.
2021. Covert communications enable a transmitter to send information reliably in the presence of an adversary, who looks to detect whether the transmission took place or not. We consider covert communications over quasi-static block fading channels, where users suffer from channel uncertainty. We investigate the adversary Willie's optimal detection performance in two extreme cases, i.e., the case of perfect channel state information (CSI) and the case of channel distribution information (CDI) only. It is shown that in the large detection error regime, Willie's detection performances of these two cases are essentially indistinguishable, which implies that the quality of CSI does not help Willie in improving his detection performance. This result enables us to study the covert transmission design without the need to factor in the exact amount of channel uncertainty at Willie. We then obtain the optimal and suboptimal closed-form solution to the covert transmission design. Our result reveals fundamental difference in the design between the case of quasi-static fading channel and the previously studied case of non-fading AWGN channel.
Conference Name: IEEE Transactions on Information Forensics and Security
CP-ABE with Efficient Revocation Based on the KEK Tree in Data Outsourcing System. 2021 40th Chinese Control Conference (CCC). :8610–8615.
.
2021. CP-ABE (ciphertext-policy attribute-based encryption) is a promising encryption scheme. In this paper, a highly expressive revocable scheme based on the key encryption keys (KEK) tree is proposed. In this method, the cloud server realizes the cancellation of attribute-level users and effectively reduces the computational burden of the data owner and attribute authority. This scheme embeds a unique random value associated with the user in the attribute group keys. The attribute group keys of each user are different, and it is impossible to initiate a collusion attack. Computing outsourcing makes most of the decryption work done by the cloud server, and the data user only need to perform an exponential operation; in terms of security, the security proof is completed under the standard model based on simple assumptions. Under the premise of ensuring security, the scheme in this paper has the functions of revocation and traceability, and the speed of decryption calculation is also improved.
A Creation Cryptographic Protocol for the Division of Mutual Authentication and Session Key. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1—6.
.
2021. In this paper is devoted a creation cryptographic protocol for the division of mutual authentication and session key. For secure protocols, suitable cryptographic algorithms were monitored.
Cross Layer Attacks and How to Use Them (for DNS Cache Poisoning, Device Tracking and More). 2021 IEEE Symposium on Security and Privacy (SP). :1179–1196.
.
2021. We analyze the prandom pseudo random number generator (PRNG) in use in the Linux kernel (which is the kernel of the Linux operating system, as well as of Android) and demonstrate that this PRNG is weak. The prandom PRNG is in use by many "consumers" in the Linux kernel. We focused on three consumers at the network level – the UDP source port generation algorithm, the IPv6 flow label generation algorithm and the IPv4 ID generation algorithm. The flawed prandom PRNG is shared by all these consumers, which enables us to mount "cross layer attacks" against the Linux kernel. In these attacks, we infer the internal state of the prandom PRNG from one OSI layer, and use it to either predict the values of the PRNG employed by the other OSI layer, or to correlate it to an internal state of the PRNG inferred from the other protocol.Using this approach we can mount a very efficient DNS cache poisoning attack against Linux. We collect TCP/IPv6 flow label values, or UDP source ports, or TCP/IPv4 IP ID values, reconstruct the internal PRNG state, then predict an outbound DNS query UDP source port, which speeds up the attack by a factor of x3000 to x6000. This attack works remotely, but can also be mounted locally, across Linux users and across containers, and (depending on the stub resolver) can poison the cache with an arbitrary DNS record. Additionally, we can identify and track Linux and Android devices – we collect TCP/IPv6 flow label values and/or UDP source port values and/or TCP/IPv4 ID fields, reconstruct the PRNG internal state and correlate this new state to previously extracted PRNG states to identify the same device.
Cross-Layer Coordinated Attacks on Cyber-Physical Systems: A LQG Game Framework with Controlled Observations. 2021 European Control Conference (ECC). :521–528.
.
2021. This work establishes a game-theoretic framework to study cross-layer coordinated attacks on cyber-physical systems (CPSs). The attacker can interfere with the physical process and launch jamming attacks on the communication channels simultaneously. At the same time, the defender can dodge the jamming by dispensing with observations. The generic framework captures a wide variety of classic attack models on CPSs. Leveraging dynamic programming techniques, we fully characterize the Subgame Perfect Equilibrium (SPE) control strategies. We also derive the SPE observation and jamming strategies and provide efficient computational methods to compute them. The results demonstrate that the physical and cyber attacks are coordinated and depend on each other.On the one hand, the control strategies are linear in the state estimate, and the estimate error caused by jamming attacks will induce performance degradation. On the other hand, the interactions between the attacker and the defender in the physical layer significantly impact the observation and jamming strategies. Numerical examples illustrate the inter-actions between the defender and the attacker through their observation and jamming strategies.
Cross-Site Scripting (XSS) and SQL Injection Attacks Multi-classification Using Bidirectional LSTM Recurrent Neural Network. 2021 IEEE International Conference on Progress in Informatics and Computing (PIC). :358–363.
.
2021. E-commerce, ticket booking, banking, and other web-based applications that deal with sensitive information, such as passwords, payment information, and financial information, are widespread. Some web developers may have different levels of understanding about securing an online application. The two vulnerabilities identified by the Open Web Application Security Project (OWASP) for its 2017 Top Ten List are SQL injection and Cross-site Scripting (XSS). Because of these two vulnerabilities, an attacker can take advantage of these flaws and launch harmful web-based actions. Many published articles concentrated on a binary classification for these attacks. This article developed a new approach for detecting SQL injection and XSS attacks using deep learning. SQL injection and XSS payloads datasets are combined into a single dataset. The word-embedding technique is utilized to convert the word’s text into a vector. Our model used BiLSTM to auto feature extraction, training, and testing the payloads dataset. BiLSTM classified the payloads into three classes: XSS, SQL injection attacks, and normal. The results showed great results in classifying payloads into three classes: XSS attacks, injection attacks, and non-malicious payloads. BiLSTM showed high performance reached 99.26% in terms of accuracy.
The Cyber Attack on the Corporate Network Models Theoretical Aspects. 2021 Systems of Signals Generating and Processing in the Field of on Board Communications. :1–4.
.
2021. Mathematical model of web server protection is being proposed based on filtering HTTP (Hypertext Transfer Protocol) packets that do not match the semantic parameters of the request standards of this protocol. The model is defined as a graph, and the relationship between the parameters - the sets of vulnerabilities of the corporate network, the methods of attacks and their consequences-is described by the Cartesian product, which provides the correct interpretation of a corporate network cyber attack. To represent the individual stages of simulated attacks, it is possible to separate graph models in order to model more complex attacks based on the existing simplest ones. The unity of the model proposed representation of cyber attack in three variants is shown, namely: graphic, text and formula.
A Cyber Physical System based Stochastic Process Language With NuSMV Model Checker. 2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE). :1—8.
.
2021. Nowadays, cyber physical systems are playing an important role in human life in which they provide features that make interactions between human and machine easier. To design and analysis such systems, the main problem is their complexity. In this paper, we propose a description language for cyber physical systems based on stochastic processes. The proposed language is called SPDL (Stochastic Description Process Language). For designing SPDL, two main parts are considered for Cyber Physical Systems (CSP): embedded systems and physical environment. Then these parts are defined as stochastic processes and CPS is defined as a tuple. Syntax and semantics of SPDL are stated based on the proposed definition. Also, the semantics are defined as by set theory. For implementation of SPDL, dependencies between words of a requirements are extracted as a tree data structure. Based on the dependencies, SPDL is used for describing the CPS. Also, a lexical analyzer and a parser based on a defined BNF grammar for SPDL is designed and implemented. Finally, SPDL of CPS is transformed to NuSMV which is a symbolic model checker. The Experimental results show that SPDL is capable of describing cyber physical systems by natural language.
A Cyber Threat Mitigation Approach For Wide Area Control of SVCs using Stability Monitoring. 2021 IEEE Madrid PowerTech. :1–6.
.
2021. We propose a stability monitoring approach for the mitigation of cyber threats directed at the wide area control (WAC) system used for coordinated control of Flexible AC Transmission Systems (FACTS) used for power oscillation damping (POD) of active power flow on inter-area tie lines. The approach involves monitoring the modes of the active power oscillation on an inter-area tie line using the Matrix Pencil (MP) method. We use the stability characteristics of the observed modes as a proxy for the presence of destabilizing cyber threats. We monitor the system modes to determine whether any destabilizing modes appear after the WAC system engages to control the POD. If the WAC signal exacerbates the POD performance, the FACTS falls back to POD using local measurements. The proposed approach does not require an expansive system-wide view of the network. We simulate replay, control integrity, and timing attacks for a test system and present results that demonstrate the performance of the SM approach for mitigation.