Biblio
Drones have quickly become ubiquitous for both recreational and serious use. As is frequently the case with new technology in general, their rapid adoption already far exceeds our legal, policy, and social ability to cope with such issues as privacy and interference with well-established commercial and military air space. While the FAA has issued rulings, they will almost certainly be challenged in court as disputes arise, for example, when property owners shoot drones down. It is clear that drones will provide a critical role in smart cities and be connected to, if not directly a part of the IoT (Internet of Things). Drones will provide an essential role in providing network relay connectivity and situational awareness, particularly in disaster assessment and recovery scenarios. As is typical for new network technologies, the deployment of the drone hardware far exceeds our research in protocols – extending our previous understanding of MANETs (mobile ad hoc networks) and DTNs (disruption tolerant networks) – and more importantly, management, control, resilience, security, and privacy concerns. This keynote address will discuss these challenges and consider future research directions.
Best Poster Award, Illinois Institute of Technology Research Day, April 11, 2016.
Querying over encrypted data is gaining increasing popularity in cloud-based data hosting services. Security and efficiency are recognized as two important and yet conflicting requirements for querying over encrypted data. In this article, we propose an efficient private keyword search (EPKS) scheme that supports binary search and extend it to dynamic settings (called DEPKS) for inverted index–based encrypted data. First, we describe our approaches of constructing a searchable symmetric encryption (SSE) scheme that supports binary search. Second, we present a novel framework for EPKS and provide its formal security definitions in terms of plaintext privacy and predicate privacy by modifying Shen et al.’s security notions [Shen et al. 2009]. Third, built on the proposed framework, we design an EPKS scheme whose complexity is logarithmic in the number of keywords. The scheme is based on the groups of prime order and enjoys strong notions of security, namely statistical plaintext privacy and statistical predicate privacy. Fourth, we extend the EPKS scheme to support dynamic keyword and document updates. The extended scheme not only maintains the properties of logarithmic-time search efficiency and plaintext privacy and predicate privacy but also has fewer rounds of communications for updates compared to existing dynamic search encryption schemes. We experimentally evaluate the proposed EPKS and DEPKS schemes and show that they are significantly more efficient in terms of both keyword search complexity and communication complexity than existing randomized SSE schemes.
The wide use of cloud computing and of data outsourcing rises important concerns with regards to data security resulting thus in the necessity of protection mechanisms such as encryption of sensitive data. The recent major theoretical breakthrough of finding the Holy Grail of encryption, i.e. fully homomorphic encryption guarantees the privacy of queries and their results on encrypted data. However, there are only a few studies proposing a practical performance evaluation of the use of homomorphic encryption schemes in order to perform database queries. In this paper, we propose and analyse in the context of a secure framework for a generic database query interpreter two different methods in which client requests are dynamically executed on homomorphically encrypted data. Dynamic compilation of the requests allows to take advantage of the different optimizations performed during an off-line step on an intermediate code representation, taking the form of boolean circuits, and, moreover, to specialize the execution using runtime information. Also, for the returned encrypted results, we assess the complexity and the efficiency of the different protocols proposed in the literature in terms of overall execution time, accuracy and communication overhead.
Proxy Mobile IPv6 (PMIPv6) is an IP mobility protocol. In a PMIPv6 domain, local mobility anchor is involved in control as well as data communication. To ease the load on a mobility anchor and avoid single point of failure, the PMIPv6 standard provides the opportunity of having multiple mobility anchors. In this paper, we propose a Software Defined Networking (SDN) based solution to provide load balancing among mobility anchors, in a SDN based PMIPv6 domain. In the proposed solution, a mobility controller performs acts as a central control entity, and performs load monitoring on the mobility anchors. On detecting the load crossing over a threshold for a certain mobility anchor, the controller moves some traffic from highly loaded mobility anchor to relatively less loaded mobility anchor. Analytical model and primitive performance evaluation of the proposed solution is presented in this paper, which demonstrates 5% and 40% improvement in uplink and downlink traffic disruption periods, respectively
The hyperlink structure of World Wide Web is modeled as a directed, dynamic, and huge web graph. Web graphs are analyzed for determining page rank, fighting web spam, detecting communities, and so on, by performing tasks such as clustering, classification, and reachability. These tasks involve operations such as graph navigation, checking link existence, and identifying active links, which demand scanning of entire graphs. Frequent scanning of very large graphs involves more I/O operations and memory overheads. To rectify these issues, several data structures have been proposed to represent graphs in a compact manner. Even though the problem of representing graphs has been actively studied in the literature, there has been much less focus on representation of dynamic graphs. In this paper, we propose Tree-Dictionary-Representation (TDR), a compressed graph representation that supports dynamic nature of graphs as well as the various graph operations. Our experimental study shows that this representation works efficiently with limited main memory use and provides fast traversal of edges.
The successful operations of modern power grids are highly dependent on a reliable and ecient underlying communication network. Researchers and utilities have started to explore the opportunities and challenges of applying the emerging software-de ned networking (SDN) technology to enhance eciency and resilience of the Smart Grid. This trend calls for a simulation-based platform that provides sufcient exibility and controllability for evaluating network application designs, and facilitating the transitions from inhouse research ideas to real productions. In this paper, we present DSSnet, a hybrid testing platform that combines a power distribution system simulator with an SDN emulator to support high delity analysis of communication network applications and their impacts on the power systems. Our contributions lay in the design of a virtual time system with the tight controllability on the execution of the emulation system, i.e., pausing and resuming any speci ed container processes in the perception of their own virtual clocks, with little overhead scaling to 500 emulated hosts with an average of 70 ms overhead; and also lay in the ecient synchronization of the two sub-systems based on the virtual time. We evaluate the system performance of DSSnet, and also demonstrate the usability through a case study by evaluating a load shifting algorithm.
Computer security problems often occur when there are disconnects between users’ understanding of their role in computer security and what is expected of them. To help users make good security decisions more easily, we need insights into the challenges they face in their daily computer usage. We built and deployed the Security Behavior Observatory (SBO) to collect data on user behavior and machine configurations from participants’ home computers. Combining SBO data with user interviews, this paper presents a qualitative study comparing users’ attitudes, behaviors, and understanding of computer security to the actual states of their computers. Qualitative inductive thematic analysis of the interviews produced “engagement” as the overarching theme, whereby participants with greater engagement in computer security and maintenance did not necessarily have more secure computer states. Thus, user engagement alone may not be predictive of computer security. We identify several other themes that inform future directions for better design and research into security interventions. Our findings emphasize the need for better understanding of how users’ computers get infected, so that we can more effectively design user-centered mitigations.
Preprocessors support the diversification of software products with #ifdefs, but also require additional effort from developers to maintain and understand variable code. We conjecture that #ifdefs cause developers to produce more vulnerable code because they are required to reason about multiple features simultaneously and maintain complex mental models of dependencies of configurable code.
We extracted a variational call graph across all configurations of the Linux kernel, and used configuration complexity metrics to compare vulnerable and non-vulnerable functions considering their vulnerability history. Our goal was to learn about whether we can observe a measurable influence of configuration complexity on the occurrence of vulnerabilities.
Our results suggest, among others, that vulnerable functions have higher variability than non-vulnerable ones and are also constrained by fewer configuration options. This suggests that developers are inclined to notice functions appear in frequently-compiled product variants. We aim to raise developers' awareness to address variability more systematically, since configuration complexity is an important, but often ignored aspect of software product lines.
A recent report has shown that there are more than 5,000 malicious applications created for Android devices each day. This creates a need for researchers to develop effective and efficient malware classification and detection approaches. To address this need, we introduce DroidClassifier: a systematic framework for classifying network traffic generated by mobile malware. Our approach utilizes network traffic analysis to construct multiple models in an automated fashion using a supervised method over a set of labeled malware network traffic (the training dataset). Each model is built by extracting common identifiers from multiple HTTP header fields. Adaptive thresholds are designed to capture the disparate characteristics of different malware families. Clustering is then used to improve the classification efficiency. Finally, we aggregate the multiple models to construct a holistic model to conduct cluster-level malware classification. We then perform a comprehensive evaluation of DroidClassifier by using 706 malware samples as the training set and 657 malware samples and 5,215 benign apps as the testing set. Collectively , these malicious and benign apps generate 17,949 network flows. The results show that DroidClassifier successfully identifies over 90% of different families of malware with more than 90% accuracy with accessible computational cost. Thus, DroidClassifier can facilitate network management in a large network, and enable unobtrusive detection of mobile malware. By focusing on analyzing network behaviors, we expect DroidClassifier to work with reasonable accuracy for other mobile platforms such as iOS and Windows Mobile as well.
Deception technologies such as honeypots are becoming increasingly popular with enterprises as the products get more flexible and the tools allow security analysts swamped with incident reports to zero in on cases of actual ongoing infiltration. According to a report released in August by research firm Technavio, the deception technology market is growing at a compound annual growth rate of 9 percent, and is predicted to reach $1.33 billion by 2020.
Humans can easily find themselves in high cost situations where they must choose between suggestions made by an automated decision aid and a conflicting human decision aid. Previous research indicates that humans often rely on automation or other humans, but not both simultaneously. Expanding on previous work conducted by Lyons and Stokes (2012), the current experiment measures how trust in automated or human decision aids differs along with perceived risk and workload. The simulated task required 126 participants to choose the safest route for a military convoy; they were presented with conflicting information from an automated tool and a human. Results demonstrated that as workload increased, trust in automation decreased. As the perceived risk increased, trust in the human decision aid increased. Individual differences in dispositional trust correlated with an increased trust in both decision aids. These findings can be used to inform training programs for operators who may receive information from human and automated sources. Examples of this context include: air traffic control, aviation, and signals intelligence.
Humans can easily find themselves in high cost situations where they must choose between suggestions made by an automated decision aid and a conflicting human decision aid. Previous research indicates that humans often rely on automation or other humans, but not both simultaneously. Expanding on previous work conducted by Lyons and Stokes (2012), the current experiment measures how trust in automated or human decision aids differs along with perceived risk and workload. The simulated task required 126 participants to choose the safest route for a military convoy; they were presented with conflicting information from an automated tool and a human. Results demonstrated that as workload increased, trust in automation decreased. As the perceived risk increased, trust in the human decision aid increased. Individual differences in dispositional trust correlated with an increased trust in both decision aids. These findings can be used to inform training programs for operators who may receive information from human and automated sources. Examples of this context include: air traffic control, aviation, and signals intelligence.
Attacks of Ransomware are increasing, this form of malware bypasses many technical solutions by leveraging social engineering methods. This means established methods of perimeter defence need to be supplemented with additional systems. Honeypots are bogus computer resources deployed by network administrators to act as decoy computers and detect any illicit access. This study investigated whether a honeypot folder could be created and monitored for changes. The investigations determined a suitable method to detect changes to this area. This research investigated methods to implement a honeypot to detect ransomware activity, and selected two options, the File Screening service of the Microsoft File Server Resource Manager feature and EventSentry to manipulate the Windows Security logs. The research developed a staged response to attacks to the system along with thresholds when there were triggered. The research ascertained that witness tripwire files offer limited value as there is no way to influence the malware to access the area containing the monitored files.
Code clone detection is an important problem for software maintenance and evolution. Many approaches consider either structure or identifiers, but none of the existing detection techniques model both sources of information. These techniques also depend on generic, handcrafted features to represent code fragments. We introduce learning-based detection techniques where everything for representing terms and fragments in source code is mined from the repository. Our code analysis supports a framework, which relies on deep learning, for automatically linking patterns mined at the lexical level with patterns mined at the syntactic level. We evaluated our novel learning-based approach for code clone detection with respect to feasibility from the point of view of software maintainers. We sampled and manually evaluated 398 file- and 480 method-level pairs across eight real-world Java systems; 93% of the file- and method-level samples were evaluated to be true positives. Among the true positives, we found pairs mapping to all four clone types. We compared our approach to a traditional structure-oriented technique and found that our learning-based approach detected clones that were either undetected or suboptimally reported by the prominent tool Deckard. Our results affirm that our learning-based approach is suitable for clone detection and a tenable technique for researchers.
Tremendous amounts of data are generated daily. Accordingly, unstructured text data that is distributed through news, blogs, and social media has gained much attention from many researchers as this data contains abundant information about various consumers' opinions. However, as the usefulness of text data is increasing, attempts to gain profits by distorting text data maliciously or non-maliciously are also increasing. In this sense, various types of spam detection techniques have been studied to prevent the side effects of spamming. The most representative studies include e-mail spam detection, web spam detection, and opinion spam detection. "Spam" is recognized on the basis of three characteristics and actions: (1) if a certain user is recognized as a spammer, then all content created by that user should be recognized as spam; (2) if certain content is exposed to other users (regardless of the users' intention), then content is recognized as spam; and (3) any content that contains malicious or non-malicious false information is recognized as spam. Many studies have been performed to solve type (1) and type (2) spamming by analyzing various metadata, such as user networks and spam words. In the case of type (3), however, relatively few studies have been conducted because it is difficult to determine the veracity of a certain word or information. In this study, we regard a hashtag that is irrelevant to the content of a blog post as spam and devise a methodology to detect such spam hashtags.
The Internet of Things(IoT) has become a popular technology, and various middleware has been proposed and developed for IoT systems. However, there have been few studies on the data management of IoT systems. In this paper, we consider graph database models for the data management of IoT systems because these models can specify relationships in a straightforward manner among entities such as devices, users, and information that constructs IoT systems. However, applying a graph database to the data management of IoT systems raises issues regarding distribution and security. For the former issue, we propose graph database operations integrated with REST APIs. For the latter, we extend a graph edge property by adding access protocol permissions and checking permissions using the APIs with authentication. We present the requirements for a use case scenario in addition to the features of a distributed graph database for IoT data management to solve the aforementioned issues, and implement a prototype of the graph database.
Intrusion detection has been an active field of research for more than 35 years. Numerous systems had been built based on the two fundamental detection principles, knowledge-based and behavior-based detection. Anyway, having a look at day-to-day news about data breaches and successful attacks, detection effectiveness is still limited. Even more, heavy-weight intrusion detection systems cannot be installed in every endangered environment. For example, Industrial Control Systems are typically utilized for decades, charging off huge investments of companies. Thus, some of these systems have been in operation for years, but were designed afore without security in mind. Even worse, as systems often have connections to other networks and even the Internet nowadays, an adequate protection is mandatory, but integrating intrusion detection can be extremely difficult - or even impossible to date. We propose a new lightweight current-based IDS which is using a difficult to manipulate measurement base and verifiable ground truth. Focus of our system is providing intrusion detection for ICS and SCADA on a low-priced base, easy to integrate. Dr. WATTson, a prototype implemented based on our concept provides high detection and low false alarm rates.
We consider wireless networks in which the effects of interference are determined by the SINR model. We address the question of structuring distributed communication when stations have very limited individual capabilities. In particular, nodes do not know their geographic coordinates, neighborhoods or even the size n of the network, nor can they sense collisions. Each node is equipped only with its unique name from a range \1, ..., N\. We study the following three settings and distributed algorithms for communication problems in each of them. In the uncoordinated-start case, when one node starts an execution and other nodes are awoken by receiving messages from already awoken nodes, we present a randomized broadcast algorithm which wakes up all the nodes in O(n log2 N) rounds with high probability. In the synchronized-start case, when all the nodes simultaneously start an execution, we give a randomized algorithm that computes a backbone of the network in O(Δ log7 N) rounds with high probability. Finally, in the partly-coordinated-start case, when a number of nodes start an execution together and other nodes are awoken by receiving messages from the already awoken nodes, we develop an algorithm that creates a backbone network in time O(n log2 N + Δ log7 N) with high probability.
Motivated by applications in cryptography, we introduce and study the problem of distribution design. The goal of distribution design is to find a joint distribution on \$n\$ random variables that satisfies a given set of constraints on the marginal distributions. Each constraint can either require that two sequences of variables be identically distributed or, alternatively, that the two sequences have disjoint supports. We present several positive and negative results on the existence and efficiency of solutions for a given set of constraints. Distribution design can be seen as a strict generalization of several well-studied problems in cryptography. These include secret sharing, garbling schemes, and non-interactive protocols for secure multiparty computation. We further motivate the problem and our results by demonstrating their usefulness towards realizing non-interactive protocols for ad-hoc secure multiparty computation, in which any subset of the parties may choose to participate and the identity of the participants should remain hidden to the extent possible.
Previously, we introduced Evolutionary Model Consistency Checking (EMCC) as an adjunct to Evolvable and Adaptive Hardware (EAH) methods. The core idea was to dual-purpose objective function evaluations to simultaneously enable EA search of hardware configurations while simultaneously enabling a model-based inference of the nature of the damage that necessitated the hardware adaptation. We demonstrated the efficacy of this method by modifying a pair of EAH oscillators inside a simulated Flapping-Wing Micro Air Vehicle (FW-MAV). In that work, we were able to show that one could, while online in normal service, evolve wing gait patterns that corrected altitude control errors cause by mechanical wing damage while simultaneously determining, with high precision, what the wing lift force deficits that necessitated the adaptation. In this work, we extend the method to be able to also determine wing drag force deficits. Further, we infer the now extended set of four unknown damage estimates without substantially increasing the number of objective function evaluations required. In this paper we will provide the outlines of a formal derivation of the new inference method plus experimental validation of efficacy. The paper will conclude with commentary on several practical issues, including better containment of estimation error by introducing more in-flight learning trials and why one might argue that these techniques could eventually be used on a true free-flying flapping wing vehicle.