Biblio
Moving target defense (MTD) is a proactive defense mechanism of changing the attack surface to increase an attacker's confusion and/or uncertainty, which invalidates its intelligence gained through reconnaissance and/or network scanning attacks. In this work, we propose software-defined networking (SDN)-based MTD technique using the shuffling of IP addresses and port numbers aiming to obfuscate both network and transport layers' real identities of the host and the service for defending against the network reconnaissance and scanning attacks. We call our proposed MTD technique Random Host and Service Multiplexing, namely RHSM. RHSM allows each host to use random, multiple virtual IP addresses to be dynamically and periodically shuffled. In addition, it uses short-lived, multiple virtual port numbers for an active service running on the host. Our proposed RHSM is novel in that we employ multiplexing (or de-multiplexing) to dynamically change and remap from all the virtual IPs of the host to the real IP or the virtual ports of the services to the real port, respectively. Via extensive simulation experiments, we prove how effectively and efficiently RHSM outperforms a baseline counterpart (i.e., a static network without RHSM) in terms of the attack success probability and defense cost.
The fast growing of ransomware attacks has become a serious threat for companies, governments and internet users, in recent years. The increasing of computing power, memory and etc. and the advance in cryptography has caused the complicating the ransomware attacks. Therefore, effective methods are required to deal with ransomwares. Although, there are many methods proposed for ransomware detection, but these methods are inefficient in detection ransomwares, and more researches are still required in this field. In this paper, we have proposed a novel method for identify ransomware from benign software using process mining methods. The proposed method uses process mining to discover the process model from the events logs, and then extracts features from this process model and using these features and classification algorithms to classify ransomwares. This paper shows that the use of classification algorithms along with the process mining can be suitable to identify ransomware. The accuracy and performance of our proposed method is evaluated using a study of 21 ransomware families and some benign samples. The results show j48 and random forest algorithms have the best accuracy in our method and can achieve to 95% accuracy in detecting ransomwares.
Momentum towards realization of smart grid will continue to result in high penetration of renewable fed Distributed Energy Resources (DERs) in the Electric Power System (EPS). The drive towards resiliency will enable a modular topology where several microgrids are tied to-gather, operating synchronously to form the future EPS. These microgrids may very well evolve to be fed by 100% Inverter Based Resources (IBRs), and required to operate reliably in both grid-connected and islanded modes. Since microgrids will evolve from existing distribution feeders, they will be unbalanced in terms of load, phases, and feeder-impedances. Protection and control of such microgrids, spanning over grid-connected mode, islanded mode, and transition mode need urgent attention. This paper focuses on the control aspect to facilitate stable operation and power sharing under these modes. A detailed EMTP model of a testbed using the IEEE 13-bus system is created in PSCAD, involving multiple inverters. Control strategy, modes, and implementation of inverter controls are described, and results showing stable operation and power sharing in all modes are presented.
This paper presents a novel technique to quantify the operational resilience for power electronic-based components affected by High-Impact Low-Frequency (HILF) weather-related events such as high speed winds. In this study, the resilience quantification is utilized to investigate how prompt the system goes back to the pre-disturbance or another stable operational state. A complexity quantification metric is used to assess the system resilience. The test system is a Solid-State Transformer (SST) representing a complex, nonlinear interconnected system. Results show the effectiveness of the proposed technique for quantifying the operational resilience in systems affected by weather-related disturbances.