Biblio

Found 1163 results

Filters: First Letter Of Title is R  [Clear All Filters]
2018-05-16
2018-05-15
2018-05-11
2019-05-31
Jiani Li, Xenofon Koutsoukos.  Submitted.  Resilient Distributed Diffusion in Networks with Adversaries. IEEE Transactions on Signal and Information Processing over Networks. Under review..
2018-05-28
2018-05-16
Titus H. Klinge, James I. Lathrop, Samuel J. Ellis.  Submitted.  Robust Combinatorial Circuits in Chemical Reaction Networks. Proceedings of the 6th International Conference on the Theory and Practice of Natural Computing (TPNC 2017), Prague, Czech Republic, Springer LNCS.

To appear.

2018-05-17
2018-05-25
2017-04-11
Christopher Theisen, Brendan Murphy, Kim Herzig, Laurie Williams.  Submitted.  Risk-Based Attack Surface Approximation: How Much Data is Enough? International Conference on Software Engineering (ICSE) Software Engineering in Practice (SEIP) 2017.

Proactive security reviews and test efforts are a necessary component of the software development lifecycle. Resource limitations often preclude reviewing the entire code
base. Making informed decisions on what code to review can improve a team’s ability to find and remove vulnerabilities. Risk-based attack surface approximation (RASA) is a technique that uses crash dump stack traces to predict what code may contain exploitable vulnerabilities. The goal of this research is to help software development teams prioritize security efforts by the efficient development of a risk-based attack surface approximation. We explore the use of RASA using Mozilla Firefox and Microsoft Windows stack traces from crash dumps. We create RASA at the file level for Firefox, in which the 15.8% of the files that were part of the approximation contained 73.6% of the vulnerabilities seen for the product. We also explore the effect of random sampling of crashes on the approximation, as it may be impractical for organizations to store and process every crash received. We find that 10-fold random sampling of crashes at a rate of 10% resulted in 3% less vulnerabilities identified than using the entire set of stack traces for Mozilla Firefox. Sampling crashes in Windows 8.1 at a rate of 40% resulted in insignificant differences in vulnerability and file coverage as compared to a rate of 100%.

2023-03-17
Masum, Mohammad, Hossain Faruk, Md Jobair, Shahriar, Hossain, Qian, Kai, Lo, Dan, Adnan, Muhaiminul Islam.  2022.  Ransomware Classification and Detection With Machine Learning Algorithms. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0316–0322.
Malicious attacks, malware, and ransomware families pose critical security issues to cybersecurity, and it may cause catastrophic damages to computer systems, data centers, web, and mobile applications across various industries and businesses. Traditional anti-ransomware systems struggle to fight against newly created sophisticated attacks. Therefore, state-of-the-art techniques like traditional and neural network-based architectures can be immensely utilized in the development of innovative ransomware solutions. In this paper, we present a feature selection-based framework with adopting different machine learning algorithms including neural network-based architectures to classify the security level for ransomware detection and prevention. We applied multiple machine learning algorithms: Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Logistic Regression (LR) as well as Neural Network (NN)-based classifiers on a selected number of features for ransomware classification. We performed all the experiments on one ransomware dataset to evaluate our proposed framework. The experimental results demonstrate that RF classifiers outperform other methods in terms of accuracy, F -beta, and precision scores.
Sendner, Christoph, Iffländer, Lukas, Schindler, Sebastian, Jobst, Michael, Dmitrienko, Alexandra, Kounev, Samuel.  2022.  Ransomware Detection in Databases through Dynamic Analysis of Query Sequences. 2022 IEEE Conference on Communications and Network Security (CNS). :326–334.
Ransomware is an emerging threat that imposed a \$ 5 billion loss in 2017, rose to \$ 20 billion in 2021, and is predicted to hit \$ 256 billion in 2031. While initially targeting PC (client) platforms, ransomware recently leaped over to server-side databases-starting in January 2017 with the MongoDB Apocalypse attack and continuing in 2020 with 85,000 MySQL instances ransomed. Previous research developed countermeasures against client-side ransomware. However, the problem of server-side database ransomware has received little attention so far. In our work, we aim to bridge this gap and present DIMAQS (Dynamic Identification of Malicious Query Sequences), a novel anti-ransomware solution for databases. DIMAQS performs runtime monitoring of incoming queries and pattern matching using two classification approaches (Colored Petri Nets (CPNs) and Deep Neural Networks (DNNs)) for attack detection. Our system design exhibits several novel techniques like dynamic color generation to efficiently detect malicious query sequences globally (i.e., without limiting detection to distinct user connections). Our proof-of-concept and ready-to-use implementation targets MySQL servers. The evaluation shows high efficiency without false negatives for both approaches and a false positive rate of nearly 0%. Both classifiers show very moderate performance overheads below 6%. We will publish our data sets and implementation, allowing the community to reproduce our tests and results.
Agarwal, Reshu, Chaudhary, Alka, Gupta, Deepa, Das, Devleen.  2022.  Ransomware Vulnerability used in darknet for web application attack. 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET). :1–5.
Cyber security is turning into a significant angle in each industry like in banking part, force and computerization segments. Servers are basic resources in these enterprises where business basic touch information is put away. These servers frequently join web servers in them through which any business information and tasks are performed remotely. Thus, clearly for a solid activity, security of web servers is extremely basic. This paper gives another testing way to deal with defenselessness appraisal of web applications by methods for breaking down and utilizing a consolidated arrangement of apparatuses to address a wide scope of security issues.
2023-06-30
Ma, Xuebin, Yang, Ren, Zheng, Maobo.  2022.  RDP-WGAN: Image Data Privacy Protection Based on Rényi Differential Privacy. 2022 18th International Conference on Mobility, Sensing and Networking (MSN). :320–324.
In recent years, artificial intelligence technology based on image data has been widely used in various industries. Rational analysis and mining of image data can not only promote the development of the technology field but also become a new engine to drive economic development. However, the privacy leakage problem has become more and more serious. To solve the privacy leakage problem of image data, this paper proposes the RDP-WGAN privacy protection framework, which deploys the Rényi differential privacy (RDP) protection techniques in the training process of generative adversarial networks to obtain a generative model with differential privacy. This generative model is used to generate an unlimited number of synthetic datasets to complete various data analysis tasks instead of sensitive datasets. Experimental results demonstrate that the RDP-WGAN privacy protection framework provides privacy protection for sensitive image datasets while ensuring the usefulness of the synthetic datasets.
2023-02-17
Eftekhari Moghadam, Vahid, Prinetto, Paolo, Roascio, Gianluca.  2022.  Real-Time Control-Flow Integrity for Multicore Mixed-Criticality IoT Systems. 2022 IEEE European Test Symposium (ETS). :1–4.
The spread of the Internet of Things (IoT) and the use of smart control systems in many mission-critical or safety-critical applications domains, like automotive or aeronautical, make devices attractive targets for attackers. Nowadays, several of these are mixed-criticality systems, i.e., they run both high-criticality tasks (e.g., a car control system) and low-criticality ones (e.g., infotainment). High-criticality routines often employ Real-Time Operating Systems (RTOS) to enforce hard real-time requirements, while the tasks with lower constraints can be delegated to more generic-purpose operating systems (GPOS).Much of the control code for these devices is written in memory-unsafe languages such as C and C++. This makes them susceptible to powerful binary attacks, such as the famous Return-Oriented Programming (ROP). Control-Flow Integrity (CFI) is the most investigated security technique to protect against such threats. At now, CFI solutions for real-time embedded systems are not as mature as the ones for general-purpose systems, and even more, there is a lack of in-depth studies on how different operating systems with different security requirements and timing constraints can coexist on a single multicore platform.This paper aims at drawing attention to the subject, discussing the current scientific proposal, and in turn proposing a solution for an optimized asymmetric verification system for execution integrity. By using an embedded hypervisor, predefined cores could be dedicated to only high or low-criticality tasks, with the high-priority core being monitored by the lower-criticality core, relying on offline binary instrumentation and a light exchange of information and signals at runtime. The work also presents preliminary results about a possible implementation for multicore ARM platforms, running both RTOS and GPOS, both in terms of security and performance penalties.
2023-03-17
Agarkhed, Jayashree, Pawar, Geetha.  2022.  Recommendation-based Security Model for Ubiquitous system using Deep learning Technique. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). :1–6.
Ubiquitous environment embedded with artificial intelligent consist of heterogenous smart devices communicating each other in several context for the computation of requirements. In such environment the trust among the smart users have taken as the challenge to provide the secure environment during the communication in the ubiquitous region. To provide the secure trusted environment for the users of ubiquitous system proposed approach aims to extract behavior of smart invisible entities by retrieving their behavior of communication in the network and applying the recommendation-based filters using Deep learning (RBF-DL). The proposed model adopts deep learning-based classifier to classify the unfair recommendation with fair ones to have a trustworthy ubiquitous system. The capability of proposed model is analyzed and validated by considering different attacks and additional feature of instances in comparison with generic recommendation systems.
ISSN: 2768-5330
2023-04-28
Nema, Tesu, Parsai, M. P..  2022.  Reconstruction of Incomplete Image by Radial Sampling. 2022 International Conference on Computer Communication and Informatics (ICCCI). :1–4.
Signals get sampled using Nyquist rate in conventional sampling method, but in compressive sensing the signals sampled below Nyquist rate by randomly taking the signal projections and reconstructing it out of very few estimations. But in case of recovering the image by utilizing compressive measurements with the help of multi-resolution grid where the image has certain region of interest (RoI) that is more important than the rest, it is not efficient. The conventional Cartesian sampling cannot give good result in motion image sensing recovery and is limited to stationary image sensing process. The proposed work gives improved results by using Radial sampling (a type of compression sensing). This paper discusses the approach of Radial sampling along with the application of Sparse Fourier Transform algorithms that helps in reducing acquisition cost and input/output overhead.
ISSN: 2329-7190
2023-03-17
Bátrla, Michael, Harašta, Jakub.  2022.  ‘Releasing the Hounds?’1 Disruption of the Ransomware Ecosystem Through Offensive Cyber Operations 2022 14th International Conference on Cyber Conflict: Keep Moving! (CyCon). 700:93–115.
Ransomware groups represent a significant cyber threat to Western states. Most high-end ransomware actors reside in territorial safe-haven jurisdictions and prove to be resistant to traditional law enforcement activities. This has prompted public sector and cybersecurity industry leaders to perceive ransomware as a national security threat requiring a whole-of-government approach, including cyber operations. In this paper, we investigate whether cyber operations or the threat of cyber operations influence the ransomware ecosystem. Subsequently, we assess the vectors of influence and characteristics of past operations that have disrupted the ecosystem. We describe the specifics of the ransomware-as-a-service system and provide three case studies (DarkSide/BlackMatter, REvil, Conti) highly representative of the current ecosystem and the effect cyber operations have on it. Additionally, we present initial observations about the influence of cyber operations on the system, including best practices from cyber operations against non-state groups. We conclude that even professional, highly skilled, and top-performing ransomware groups can be disrupted through cyber operations. In fact, cyber operations can even bypass some limits imposed on law enforcement operations. Even when ransomware groups rebrand or resurface after a hiatus, we suggest their infrastructure (both technical, human, and reputational) will still suffer mid-to long-term disruption. Although cyber operations are unlikely to be a silver bullet, they are an essential tool in the whole-of-government and multinational efforts and may even grow in importance in the next several years.1‘Releasing the hounds’ is a term for offensive cyber operations aimed at disrupting global ransomware gangs, especially those conducted by militaries or intelligence agencies. First use is found in Patrick Gray and Adam Boileau, ‘Feature Podcast: Releasing the Hounds with Bobby Chesney’, Risky Business, 28 May 2020, https://risky.biz/HF6/.
ISSN: 2325-5374
2023-01-06
Bogatyrev, Vladimir A., Bogatyrev, Stanislav V., Bogatyrev, Anatoly V..  2022.  Reliability and Timeliness of Servicing Requests in Infocommunication Systems, Taking into Account the Physical and Information Recovery of Redundant Storage Devices. 2022 International Conference on Information, Control, and Communication Technologies (ICCT). :1—4.
Markov models of reliability of fault-tolerant computer systems are proposed, taking into account two stages of recovery of redundant memory devices. At the first stage, the physical recovery of memory devices is implemented, and at the second, the informational one consists in entering the data necessary to perform the required functions. Memory redundancy is carried out to increase the stability of the system to the loss of unique data generated during the operation of the system. Data replication is implemented in all functional memory devices. Information recovery is carried out using replicas of data stored in working memory devices. The model takes into account the criticality of the system to the timeliness of calculations in real time and to the impossibility of restoring information after multiple memory failures, leading to the loss of all stored replicas of unique data. The system readiness coefficient and the probability of its transition to a non-recoverable state are determined. The readiness of the system for the timely execution of requests is evaluated, taking into account the influence of the shares of the distribution of the performance of the computer allocated for the maintenance of requests and for the entry of information into memory after its physical recovery.
Dhiman, Bhavya, Bose S, Rubin.  2022.  A Reliable, Secure and Efficient Decentralised Conditional of KYC Verification System: A Blockchain Approach. 2022 International Conference on Edge Computing and Applications (ICECAA). :564—570.
KYC or Know Your Customer is the procedure to verify the individuality of its consumers & evaluating the possible dangers of illegitimate trade relations. A few problems with the existing KYC manual process are that it is less secure, time-consuming and expensive. With the advent of Blockchain technology, its structures such as consistency, security, and geographical diversity make them an ideal solution to such problems. Although marketing solutions such as KYC-chain.co, K-Y-C. The legal right to enable blockchain-based KYC authentication provides a way for documents to be verified by a trusted network participant. This project uses an ETHereum based Optimised KYC Block-chain system with uniform A-E-S encryption and compression built on the LZ method. The system publicly verifies a distributed encryption, is protected by cryptography, operates by pressing the algorithm and is all well-designed blockchain features. The suggested scheme is a novel explanation based on Distributed Ledger Technology or Blockchain technology that would cut KYC authentication process expenses of organisations & decrease the regular schedule for completion of the procedure whilst becoming easier for clients. The largest difference in the system in traditional methods is the full authentication procedure is performed in just no time for every client, regardless of the number of institutions you desire to be linked to. Furthermore, since DLT is employed, validation findings may be securely distributed to consumers, enhancing transparency. Based on this method, a Proof of Concept (POC) is produced with Ethereum's API, websites as endpoints and the android app as the front office, recognising the viability and efficacy of this technique. Ultimately, this strategy enhances consumer satisfaction, lowers budget overrun & promotes transparency in the customer transport network.
Wang, Yingjue, Gong, Lei, Zhang, Min.  2022.  Remote Disaster Recovery and Backup of Rehabilitation Medical Archives Information System Construction under the Background of Big Data. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). :575—578.
Realize the same-city and remote disaster recovery of the infectious disease network direct reporting system of the China Medical Archives Information Center. Method: A three-tier B/S/DBMS architecture is used in the disaster recovery center to deploy an infectious disease network direct reporting system, and realize data-level disaster recovery through remote replication technology; realize application-level disaster recovery of key business systems through asynchronous data technology; through asynchronous the mode carries on the network direct report system disaster tolerance data transmission of medical files. The establishment of disaster recovery centers in different cities in the same city ensures the direct reporting system and data security of infectious diseases, and ensures the effective progress of continuity work. The results show that the efficiency of remote disaster recovery and backup based on big data has increased by 9.2%
2023-03-17
Chen, Xinghua, Huang, Lixian, Zheng, Dan, Chen, Jinchang, Li, Xinchao.  2022.  Research and Application of Communication Security in Security and Stability Control System of Power Grid. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1215–1221.
Plaintext transmission is the major way of communication in the existing security and stability control (SSC) system of power grid. Such type of communication is easy to be invaded, camouflaged and hijacked by a third party, leading to a serious threat to the safe and stable operation of power system. Focusing on the communication security in SSC system, the authors use asymmetric encryption algorithm to encrypt communication messages, to generate random numbers through random noise of electrical quantities, and then use them to generate key pairs needed for encryption, at the same time put forward a set of key management mechanism for engineering application. In addition, the field engineering test is performed to verify that the proposed encryption method and management mechanism can effectively improve the communication in SSC system while ensuring the high-speed and reliable communication.
2023-01-05
Ma, Shiming.  2022.  Research and Design of Network Information Security Attack and Defense Practical Training Platform based on ThinkPHP Framework. 2022 2nd Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS). :27—31.
To solve the current problem of scarce information security talents, this paper proposes to design a network information security attack and defense practical training platform based on ThinkPHP framework. It provides help for areas with limited resources and also offers a communication platform for the majority of information security enthusiasts and students. The platform is deployed using ThinkPHP, and in order to meet the personalized needs of the majority of users, support vector machine algorithms are added to the platform to provide a more convenient service for users.
2023-03-17
Lv, Xiaonan, Huang, Zongwei, Sun, Liangyu, Wu, Miaomiao, Huang, Li, Li, Yehong.  2022.  Research and design of web-based capital transaction data dynamic multi-mode visual analysis tool. 2022 IEEE 7th International Conference on Smart Cloud (SmartCloud). :165–170.
For multi-source heterogeneous complex data types of data cleaning and visual display, we proposed to build dynamic multimode visualization analysis tool, according to the different types of data designed by the user in accordance with the data model, and use visualization technology tools to build and use CQRS technology to design, external interface using a RESTFul architecture, The domain model and data query are completely separated, and the underlying data store adopts Hbase, ES and relational database. Drools is adopted in the data flow engine. According to the internal algorithm, three kinds of graphs can be output, namely, transaction relationship network analysis graph, capital flow analysis graph and transaction timing analysis graph, which can reduce the difficulty of analysis and help users to analyze data in a more friendly way
2023-04-14
Mingsheng, Xu, Chunxia, Li, Wenhui, Du.  2022.  Research and Development of Dual-Core Browser-Based Compatibility and Security. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1697—1701.
Aiming at the current troubles encountered by enterprise employees in their daily work when operating business systems due to web compatibility issues, a dual-core secure browser is designed and developed in the paper based on summarizing the current development status of multi-core browsers, key difficulties and challenges in the field. Based on the Chromium open-source project, the design of a dual-core browser auto-adaptation method is carried out. Firstly, dual-core encapsulation technology is implemented, followed by a study of the core auto-adaptation algorithm, and then a core cookie sharing function is developed based on Hook technology. In addition, the security of the browser is reinforced by designing a cookie manager, adding behavior monitoring functions, and unified platform control to enhance confidentiality and security, providing a safe and secure interface for employees' work and ubiquitous IoT access. While taking security into account, the browser realizes the need for a single browser compatible with all business system web pages of the enterprise, enhancing the operating experience of the client. Finally, the possible future research directions in this field are summarized and prospected.
2023-09-08
Huang, Junya, Liu, Zhihua, Zheng, Zhongmin, Wei, Xuan, Li, Man, Jia, Man.  2022.  Research and Development of Intelligent Protection Capabilities Against Internet Routing Hijacking and Leakage. 2022 International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC). :50–54.
With the rapid growth of the number of global network entities and interconnections, the security risks of network relationships are constantly accumulating. As the basis of network interconnection and communication, Internet routing is facing severe challenges such as insufficient online monitoring capability of large-scale routing events and lack of effective and credible verification mechanism. Major global routing security events emerge one after another, causing extensive and far-reaching impacts. To solve these problems, China Telecom studied the BGP (border gateway protocol) SDN (software defined network) controller technology to monitor the interconnection routing, constructed the global routing information database trust source integrating multi-dimensional information and developed the function of the protocol level based real-time monitoring system of Internet routing security events. Through these means, it realizes the second-level online monitoring capability of large-scale IP network Internet service routing events, forms the minute-level route leakage interception and route hijacking blocking solutions, and achieves intelligent protection capability of Internet routing security.