Visible to the public Biblio

Filters: Keyword is anonymity in wireless networks  [Clear All Filters]
2017-04-24
Sivakorn, Suphannee, Keromytis, Angelos D., Polakis, Jason.  2016.  That's the Way the Cookie Crumbles: Evaluating HTTPS Enforcing Mechanisms. Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society. :71–81.

Recent incidents have once again brought the topic of encryption to public discourse, while researchers continue to demonstrate attacks that highlight the difficulty of implementing encryption even without the presence of "backdoors". However, apart from the threat of implementation flaws in encryption libraries, another significant threat arises when web services fail to enforce ubiquitous encryption. A recent study explored this phenomenon in popular services, and demonstrated how users are exposed to cookie hijacking attacks with severe privacy implications. Many security mechanisms purport to eliminate this problem, ranging from server-controlled options such as HSTS to user-controlled options such as HTTPS Everywhere and other browser extensions. In this paper, we create a taxonomy of available mechanisms and evaluate how they perform in practice. We design an automated testing framework for these mechanisms, and evaluate them using a dataset of 30 days of HTTP requests collected from the public wireless network of our university's campus. We find that all mechanisms suffer from implementation flaws or deployment issues and argue that, as long as servers continue to not support ubiquitous encryption across their entire domain (including all subdomains), no mechanism can effectively protect users from cookie hijacking and information leakage.

Li, Xiaoyu, Yoshie, Osamu, Huang, Daoping.  2016.  A Passive Means Based Privacy Protection Method for the Perceptual Layer of IoTs. Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services. :335–339.

Privacy protection in Internet of Things (IoTs) has long been the topic of extensive research in the last decade. The perceptual layer of IoTs suffers the most significant privacy disclosing because of the limitation of hardware resources. Data encryption and anonymization are the most common methods to protect private information for the perceptual layer of IoTs. However, these efforts are ineffective to avoid privacy disclosure if the communication environment exists unknown wireless nodes which could be malicious devices. Therefore, in this paper we derive an innovative and passive method called Horizontal Hierarchy Slicing (HHS) method to detect the existence of unknown wireless devices which could result negative means to the privacy. PAM algorithm is used to cluster the HHS curves and analyze whether unknown wireless devices exist in the communicating environment. Link Quality Indicator data are utilized as the network parameters in this paper. The simulation results show their effectiveness in privacy protection.

Li, Yan, Zhu, Ting.  2016.  Gait-Based Wi-Fi Signatures for Privacy-Preserving. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :571–582.

With the advent of the Internet of Things (IoT) and big data, high fidelity localization and tracking systems that employ cameras, RFIDs, and attached sensors intrude on personal privacy. However, the benefit of localization information sharing enables trend forecasting and automation. To address this challenge, we introduce Wobly, an attribute based signature (ABS) that measures gait. Wobly passively receives Wi-Fi beacons and produces human signatures based on the Doppler Effect and multipath signals without attached devices and out of direct line-of-sight. Because signatures are specific to antenna placement and room configuration and do not require sensor attachments, the identities of the individuals can remain anonymous. However, the gait based signatures are still unique, and thus Wobly is able to track individuals in a building or home. Wobly uses the physical layer channel and the unique human gait as a means of encoding a person's identity. We implemented Wobly on a National Instruments Radio Frequency (RF) test bed. Using a simple naive Bayes classifier, the correct identification rate was 87% with line-of-sight (LoS) and 77% with non-line-of-sight (NLoS).

Shokri, Reza, Theodorakopoulos, George, Troncoso, Carmela.  2016.  Privacy Games Along Location Traces: A Game-Theoretic Framework for Optimizing Location Privacy. ACM Trans. Priv. Secur.. 19:11:1–11:31.

The mainstream approach to protecting the privacy of mobile users in location-based services (LBSs) is to alter (e.g., perturb, hide, and so on) the users’ actual locations in order to reduce exposed sensitive information. In order to be effective, a location-privacy preserving mechanism must consider both the privacy and utility requirements of each user, as well as the user’s overall exposed locations (which contribute to the adversary’s background knowledge). In this article, we propose a methodology that enables the design of optimal user-centric location obfuscation mechanisms respecting each individual user’s service quality requirements, while maximizing the expected error that the optimal adversary incurs in reconstructing the user’s actual trace. A key advantage of a user-centric mechanism is that it does not depend on third-party proxies or anonymizers; thus, it can be directly integrated in the mobile devices that users employ to access LBSs. Our methodology is based on the mutual optimization of user/adversary objectives (maximizing location privacy versus minimizing localization error) formalized as a Stackelberg Bayesian game. This formalization makes our solution robust against any location inference attack, that is, the adversary cannot decrease the user’s privacy by designing a better inference algorithm as long as the obfuscation mechanism is designed according to our privacy games. We develop two linear programs that solve the location privacy game and output the optimal obfuscation strategy and its corresponding optimal inference attack. These linear programs are used to design location privacy–preserving mechanisms that consider the correlation between past, current, and future locations of the user, thus can be tuned to protect different privacy objectives along the user’s location trace. We illustrate the efficacy of the optimal location privacy–preserving mechanisms obtained with our approach against real location traces, showing their performance in protecting users’ different location privacy objectives.

Spreitzer, Raphael, Griesmayr, Simone, Korak, Thomas, Mangard, Stefan.  2016.  Exploiting Data-Usage Statistics for Website Fingerprinting Attacks on Android. Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :49–60.

The browsing behavior of a user allows to infer personal details, such as health status, political interests, sexual orientation, etc. In order to protect this sensitive information and to cope with possible privacy threats, defense mechanisms like SSH tunnels and anonymity networks (e.g., Tor) have been established. A known shortcoming of these defenses is that website fingerprinting attacks allow to infer a user's browsing behavior based on traffic analysis techniques. However, website fingerprinting typically assumes access to the client's network or to a router near the client, which restricts the applicability of these attacks. In this work, we show that this rather strong assumption is not required for website fingerprinting attacks. Our client-side attack overcomes several limitations and assumptions of network-based fingerprinting attacks, e.g., network conditions and traffic noise, disabled browser caches, expensive training phases, etc. Thereby, we eliminate assumptions used for academic purposes and present a practical attack that can be implemented easily and deployed on a large scale. Eventually, we show that an unprivileged application can infer the browsing behavior by exploiting the unprotected access to the Android data-usage statistics. More specifically, we are able to infer 97% of 2,500 page visits out of a set of 500 monitored pages correctly. Even if the traffic is routed through Tor by using the Orbot proxy in combination with the Orweb browser, we can infer 95% of 500 page visits out of a set of 100 monitored pages correctly. Thus, the READ\_HISTORY\_BOOKMARKS permission, which is supposed to protect the browsing behavior, does not provide protection.

Alan, Hasan Faik, Kaur, Jasleen.  2016.  Can Android Applications Be Identified Using Only TCP/IP Headers of Their Launch Time Traffic? Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :61–66.

The ability to identify mobile apps in network traffic has significant implications in many domains, including traffic management, malware detection, and maintaining user privacy. App identification methods in the literature typically use deep packet inspection (DPI) and analyze HTTP headers to extract app fingerprints. However, these methods cannot be used if HTTP traffic is encrypted. We investigate whether Android apps can be identified from their launch-time network traffic using only TCP/IP headers. We first capture network traffic of 86,109 app launches by repeatedly running 1,595 apps on 4 distinct Android devices. We then use supervised learning methods used previously in the web page identification literature, to identify the apps that generated the traffic. We find that: (i) popular Android apps can be identified with 88% accuracy, by using the packet sizes of the first 64 packets they generate, when the learning methods are trained and tested on the data collected from same device; (ii) when the data from an unseen device (but similar operating system/vendor) is used for testing, the apps can be identified with 67% accuracy; (iii) the app identification accuracy does not drop significantly even if the training data are stale by several days, and (iv) the accuracy does drop quite significantly if the operating system/vendor is very different. We discuss the implications of our findings as well as open issues.

Barman, Ludovic, Zamani, Mahdi, Dacosta, Italo, Feigenbaum, Joan, Ford, Bryan, Hubaux, Jean-Pierre, Wolinsky, David.  2016.  PriFi: A Low-Latency and Tracking-Resistant Protocol for Local-Area Anonymous Communication. Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society. :181–184.

Popular anonymity mechanisms such as Tor provide low communication latency but are vulnerable to traffic analysis attacks that can de-anonymize users. Moreover, known traffic-analysis-resistant techniques such as Dissent are impractical for use in latency-sensitive settings such as wireless networks. In this paper, we propose PriFi, a low-latency protocol for anonymous communication in local area networks that is provably secure against traffic analysis attacks. This allows members of an organization to access the Internet anonymously while they are on-site, via privacy-preserving WiFi networking, or off-site, via privacy-preserving virtual private networking (VPN). PriFi reduces communication latency using a client/relay/server architecture in which a set of servers computes cryptographic material in parallel with the clients to minimize unnecessary communication latency. We also propose a technique for protecting against equivocation attacks, with which a malicious relay might de-anonymize clients. This is achieved without adding extra latency by encrypting client messages based on the history of all messages they have received so far. As a result, any equivocation attempt makes the communication unintelligible, preserving clients' anonymity while holding the servers accountable.

Xue, Minhui, Ballard, Cameron, Liu, Kelvin, Nemelka, Carson, Wu, Yanqiu, Ross, Keith, Qian, Haifeng.  2016.  You Can Yak but You Can'T Hide: Localizing Anonymous Social Network Users. Proceedings of the 2016 Internet Measurement Conference. :25–31.

The recent growth of anonymous social network services – such as 4chan, Whisper, and Yik Yak – has brought online anonymity into the spotlight. For these services to function properly, the integrity of user anonymity must be preserved. If an attacker can determine the physical location from where an anonymous message was sent, then the attacker can potentially use side information (for example, knowledge of who lives at the location) to de-anonymize the sender of the message. In this paper, we investigate whether the popular anonymous social media application Yik Yak is susceptible to localization attacks, thereby putting user anonymity at risk. The problem is challenging because Yik Yak application does not provide information about distances between user and message origins or any other message location information. We provide a comprehensive data collection and supervised machine learning methodology that does not require any reverse engineering of the Yik Yak protocol, is fully automated, and can be remotely run from anywhere. We show that we can accurately predict the locations of messages up to a small average error of 106 meters. We also devise an experiment where each message emanates from one of nine dorm colleges on the University of California Santa Cruz campus. We are able to determine the correct dorm college that generated each message 100\textbackslash% of the time.

Wu, Fei, Yang, Yang, Zhang, Ouyang, Srinivasan, Kannan, Shroff, Ness B..  2016.  Anonymous-query Based Rate Control for Wireless Multicast: Approaching Optimality with Constant Feedback. Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. :191–200.

For a multicast group of n receivers, existing techniques either achieve high throughput at the cost of prohibitively large (e.g., O(n)) feedback overhead, or achieve low feedback overhead but without either optimal or near-optimal throughput guarantees. Simultaneously achieving good throughput guarantees and low feedback overhead has been an open problem and could be the key reason why wireless multicast has not been successfully deployed in practice. In this paper, we develop a novel anonymous-query based rate control, which approaches the optimal throughput with a constant feedback overhead independent of the number of receivers. In addition to our theoretical results, through implementation on a software-defined ratio platform, we show that the anonymous-query based algorithm achieves low-overhead and robustness in practice.

Bultel, Xavier, Gambs, Sébastien, Gérault, David, Lafourcade, Pascal, Onete, Cristina, Robert, Jean-Marc.  2016.  A Prover-Anonymous and Terrorist-Fraud Resistant Distance-Bounding Protocol. Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :121–133.

Contactless communications have become omnipresent in our daily lives, from simple access cards to electronic passports. Such systems are particularly vulnerable to relay attacks, in which an adversary relays the messages from a prover to a verifier. Distance-bounding protocols were introduced to counter such attacks. Lately, there has been a very active research trend on improving the security of these protocols, but also on ensuring strong privacy properties with respect to active adversaries and malicious verifiers. In particular, a difficult threat to address is the terrorist fraud, in which a far-away prover cooperates with a nearby accomplice to fool a verifier. The usual defence against this attack is to make it impossible for the accomplice to succeed unless the prover provides him with enough information to recover his secret key and impersonate him later on. However, the mere existence of a long-term secret key is problematic with respect to privacy. In this paper, we propose a novel approach in which the prover does not leak his secret key but a reusable session key along with a group signature on it. This allows the adversary to impersonate him even without knowing his signature key. Based on this approach, we give the first distance-bounding protocol, called SPADE, integrating anonymity, revocability and provable resistance to standard threat models.