Decision-making in policy governed human-autonomous systems teams
Title | Decision-making in policy governed human-autonomous systems teams |
Publication Type | Conference Paper |
Year of Publication | 2017 |
Authors | Felmlee, D., Lupu, E., McMillan, C., Karafili, E., Bertino, E. |
Conference Name | 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) |
Date Published | aug |
Keywords | automated systems, autonomous systems, Biological system modeling, coalition environments, Collaboration, computer theory, decision making, decision-making, Human Behavior, human factors, learning (artificial intelligence), machine reasoning processes, Mathematical model, military computing, multi-agent systems, policy governed human-autonomous system teams, Protocols, pubcrawl, social exchange theory, social sciences computing, social-exchange theory, Trust |
Abstract | Policies govern choices in the behavior of systems. They are applied to human behavior as well as to the behavior of autonomous systems but are defined differently in each case. Generally humans have the ability to interpret the intent behind the policies, to bring about their desired effects, even occasionally violating them when the need arises. In contrast, policies for automated systems fully define the prescribed behavior without ambiguity, conflicts or omissions. The increasing use of AI techniques and machine learning in autonomous systems such as drones promises to blur these boundaries and allows us to conceive in a similar way more flexible policies for the spectrum of human-autonomous systems collaborations. In coalition environments this spectrum extends across the boundaries of authority in pursuit of a common coalition goal and covers collaborations between human and autonomous systems alike. In social sciences, social exchange theory has been applied successfully to explain human behavior in a variety of contexts. It provides a framework linking the expected rewards, costs, satisfaction and commitment to explain and anticipate the choices that individuals make when confronted with various options. We discuss here how it can be used within coalition environments to explain joint decision making and to help formulate policies re-framing the concepts where appropriate. Social exchange theory is particularly attractive within this context as it provides a theory with "measurable" components that can be readily integrated in machine reasoning processes. |
URL | https://ieeexplore.ieee.org/document/8397419/ |
DOI | 10.1109/UIC-ATC.2017.8397419 |
Citation Key | felmlee_decision-making_2017 |
- machine reasoning processes
- trust
- social-exchange theory
- social sciences computing
- social exchange theory
- pubcrawl
- Protocols
- policy governed human-autonomous system teams
- multi-agent systems
- military computing
- Mathematical model
- automated systems
- learning (artificial intelligence)
- Human Factors
- Human behavior
- decision-making
- Decision Making
- computer theory
- collaboration
- coalition environments
- Biological system modeling
- autonomous systems