Biblio
One of the most challenging issues facing Internet of Medical Things (IoMT) cyber defense is the complexity of their ecosystem coupled with the development of cyber-attacks. Medical equipments lack built-in security and are increasingly becoming connected. Moving beyond traditional security solutions becomes a necessity to protect patients and organizations. In order to effectively deal with the security risks of networked medical devices in such a complex and heterogeneous system, we need to measure security risks and prioritize mitigation actions. In this context, we propose a Fuzzy AHP-based method to assess security attributes of connected medical devices and compare different device models against a selected profile with regards to the user requirements. The proposal aims to empower user security awareness to make well-educated decisions.
False news has become widespread in the last decade in political, economic, and social dimensions. This has been aided by the deep entrenchment of social media networking in these dimensions. Facebook and Twitter have been known to influence the behavior of people significantly. People rely on news/information posted on their favorite social media sites to make purchase decisions. Also, news posted on mainstream and social media platforms has a significant impact on a particular country’s economic stability and social tranquility. Therefore, there is a need to develop a deceptive system that evaluates the news to avoid the repercussions resulting from the rapid dispersion of fake news on social media platforms and other online platforms. To achieve this, the proposed system uses the preprocessing stage results to assign specific vectors to words. Each vector assigned to a word represents an intrinsic characteristic of the word. The resulting word vectors are then applied to RNN models before proceeding to the LSTM model. The output of the LSTM is used to determine whether the news article/piece is fake or otherwise.
Biometric security is the fastest growing area that receives considerable attention over the past few years. Digital hiding and encryption technologies provide an effective solution to secure biometric information from intentional or accidental attacks. Visual cryptography is the approach utilized for encrypting the information which is in the form of visual information for example images. Meanwhile, the biometric template stored in the databases are generally in the form of images, the visual cryptography could be employed effectively for encrypting the template from the attack. This study develops a share creation with improved encryption process for secure biometric verification (SCIEP-SBV) technique. The presented SCIEP-SBV technique majorly aims to attain security via encryption and share creation (SC) procedure. Firstly, the biometric images undergo SC process to produce several shares. For encryption process, homomorphic encryption (HE) technique is utilized in this work. To further improve the secrecy, an improved bald eagle search (IBES) approach was exploited in this work. The simulation values of the SCIEP-SBV system are tested on biometric images. The extensive comparison study demonstrated the improved outcomes of the SCIEP-SBV technique over compared methods.
Noise has been used as a way of protecting privacy of users in public datasets for many decades now. Differential privacy is a new standard to add noise, so that user privacy is protected. When this technique is applied for a single end user data, it's called local differential privacy. In this study, we evaluate the effects of adding noise to generate randomized responses on machine learning models. We generate randomized responses using Gaussian, Laplacian noise on singular end user data as well as correlated end user data. Finally, we provide results that we have observed on a few data sets for various machine learning use cases.
In this study, a novel decentralized authentication model is proposed for establishing a secure communications structure in VoIP applications. The proposed scheme considers a distributed architecture called the blockchain. With this scheme, we highlight the multimedia data is more resistant to some of the potential attacks according to the centralized architecture. Our scheme presents the overall system authentication architecture, and it is suitable for mutual authentication in terms of privacy and anonymity. We construct an ECC-based model in the encryption infrastructure because our structure is time-constrained during communications. This study differs from prior work in that blockchain platforms with ECC-Based Biometric Signature. We generate a biometric key for creating a unique ID value with ECC to verify the caller and device authentication together in blockchain. We validated the proposed model by comparing with the existing method in VoIP application used centralized architecture.