Title | New McEliece Cryptosystem Based on Polar-LDPC Concatenated Codes as a Post-quantum Cryptography |
Publication Type | Conference Paper |
Year of Publication | 2021 |
Authors | Wang, Ruyi, Wang, Yong, Xie, Hao |
Conference Name | 2021 IEEE 21st International Conference on Communication Technology (ICCT) |
Keywords | Asymmetric Encryption, codes, coding theory, Computers, Decoding, LDPC codes, McEliece Cryptosystem, Metrics, parity check codes, polar codes, Post-quantum resilience, pubcrawl, quantum computing, Quantum mechanics, resilience, Resiliency, Resists, security |
Abstract | With the increase of computing power of quantum computers, classical cryptography schemes such as RSA and ECC are no longer secure in the era of quantum computers. The Cryptosystem based on coding has the advantage of resisting quantum computing and has a good application prospect in the future. McEliece Public Key Cryptography is a cryptosystem based on coding theory, whose security can be reduced to the decoding problem of general linear codes and can resist quantum attacks. Therefore, this paper proposes a cryptosystem based on the Polar-LDPC Concatenated Codes, which is an improvement on the original McEliece cipher scheme. The main idea is to take the generation matrix of Polar code and LDPC code as the private key, and the product of their hidden generation matrix as the public key. The plain text is encoded by Polar code and LDPC code in turn to obtain the encrypted ciphertext. The decryption process is the corresponding decoding process. Then, the experimental data presented in this paper prove that the proposed scheme can reduce key size and improve security compared with the original McEliece cryptosystem under the condition of selecting appropriate parameters. Moreover, compared with the improvement schemes based on McEliece proposed in recent years, the proposed scheme also has great security advantages. |
DOI | 10.1109/ICCT52962.2021.9657958 |
Citation Key | wang_new_2021 |