Visible to the public Biblio

Filters: Keyword is LDPC codes  [Clear All Filters]
2023-01-06
Sharma, Himanshu, Kumar, Neeraj, Tekchandani, Raj Kumar, Mohammad, Nazeeruddin.  2022.  Deep Learning enabled Channel Secrecy Codes for Physical Layer Security of UAVs in 5G and beyond Networks. ICC 2022 - IEEE International Conference on Communications. :1—6.

Unmanned Aerial Vehicles (UAVs) are drawing enormous attention in both commercial and military applications to facilitate dynamic wireless communications and deliver seamless connectivity due to their flexible deployment, inherent line-of-sight (LOS) air-to-ground (A2G) channels, and high mobility. These advantages, however, render UAV-enabled wireless communication systems susceptible to eavesdropping attempts. Hence, there is a strong need to protect the wireless channel through which most of the UAV-enabled applications share data with each other. There exist various error correction techniques such as Low Density Parity Check (LDPC), polar codes that provide safe and reliable data transmission by exploiting the physical layer but require high transmission power. Also, the security gap achieved by these error-correction techniques must be reduced to improve the security level. In this paper, we present deep learning (DL) enabled punctured LDPC codes to provide secure and reliable transmission of data for UAVs through the Additive White Gaussian Noise (AWGN) channel irrespective of the computational power and channel state information (CSI) of the Eavesdropper. Numerical result analysis shows that the proposed scheme reduces the Bit Error Rate (BER) at Bob effectively as compared to Eve and the Signal to Noise Ratio (SNR) per bit value of 3.5 dB is achieved at the maximum threshold value of BER. Also, the security gap is reduced by 47.22 % as compared to conventional LDPC codes.

2022-07-01
Wang, Ruyi, Wang, Yong, Xie, Hao.  2021.  New McEliece Cryptosystem Based on Polar-LDPC Concatenated Codes as a Post-quantum Cryptography. 2021 IEEE 21st International Conference on Communication Technology (ICCT). :111—116.
With the increase of computing power of quantum computers, classical cryptography schemes such as RSA and ECC are no longer secure in the era of quantum computers. The Cryptosystem based on coding has the advantage of resisting quantum computing and has a good application prospect in the future. McEliece Public Key Cryptography is a cryptosystem based on coding theory, whose security can be reduced to the decoding problem of general linear codes and can resist quantum attacks. Therefore, this paper proposes a cryptosystem based on the Polar-LDPC Concatenated Codes, which is an improvement on the original McEliece cipher scheme. The main idea is to take the generation matrix of Polar code and LDPC code as the private key, and the product of their hidden generation matrix as the public key. The plain text is encoded by Polar code and LDPC code in turn to obtain the encrypted ciphertext. The decryption process is the corresponding decoding process. Then, the experimental data presented in this paper prove that the proposed scheme can reduce key size and improve security compared with the original McEliece cryptosystem under the condition of selecting appropriate parameters. Moreover, compared with the improvement schemes based on McEliece proposed in recent years, the proposed scheme also has great security advantages.
2019-11-25
Abdulwahab, Walled Khalid, Abdulrahman Kadhim, Abdulkareem.  2018.  Comparative Study of Channel Coding Schemes for 5G. 2018 International Conference on Advanced Science and Engineering (ICOASE). :239–243.
In this paper we look into 5G requirements for channel coding and review candidate channel coding schemes for 5G. A comparative study is presented for possible channel coding candidates of 5G covering Convolutional, Turbo, Low Density Parity Check (LDPC), and Polar codes. It seems that polar code with Successive Cancellation List (SCL) decoding using small list length (such as 8) is a promising choice for short message lengths (≤128 bits) due to its error performance and relatively low complexity. Also adopting non-binary LDPC can provide good performance on the expense of increased complexity but with better spectral efficiency. Considering the implementation, polar code with decoding algorithms based on SCL required small area and low power consumption when compared to LDPC codes. For larger message lengths (≥256 bits) turbo code can provide better performance at low coding rates (\textbackslashtextless;1/2).
Abdessalem, Marwa Ben, Zribi, Amin, Matsumoto, Tadashi, Bouallègue, Ammar.  2018.  LDPC-based Joint Source-Channel-Network Coding for the Multiple Access Relay Channel. 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM). :1–6.
In this work, we investigate the MARC (Multiple Access Relay Channel) setup, in which two Markov sources communicate to a single destination, aided by one relay, based on Joint Source Channel Network (JSCN) LDPC codes. In addition, the two source nodes compress the information sequences with an LDPC source code. The compressed symbols are directly transmitted to both a relay and a destination nodes in two transportation phases. Indeed, the relay performs the concatenation of the received compressed sequences to obtain a recovered sequence, which is encoded with an LDPC channel code, before being forwarded to the destination. At the receiver, we propose an iterative joint decoding algorithm that exploits the correlation between the two sources-relay data and takes into account the errors occurring in the sources-relay links to estimate the source data. We show based on simulation results that the JSCN coding and decoding scheme into a MARC setup achieves a good performance with a gain of about 5 dB compared to a conventional LDPC code.
2018-10-26
Taieb, M. H., Chouinard, J..  2017.  Physical layer security using BCH and LDPC codes with adaptive granular HARQ. 2017 IEEE Conference on Communications and Network Security (CNS). :564–569.

Transmission techniques based on channel coding with feedback are proposed in this paper to enhance the security of wireless communications systems at the physical layer. Reliable and secure transmission over an additive noise Gaussian wiretap channel is investigated using Bose-Chaudhuri-Hocquenghem (BCH) and Low-Density Parity-Check (LDPC) channel codes. A hybrid automatic repeat-request (HARQ) protocol is used to allow for the retransmission of coded packets requested by the intended receiver (Bob). It is assumed that an eavesdropper (Eve) has access to all forward and feedback transmitted packets. To limit the information leakage to Eve, retransmitted packets are subdivided into smaller granular subpackets. Retransmissions are stopped as soon as the decoding process at the legitimate (Bob) receiver converges. For the hard decision decoded BCH codes, a framework to compute the frame error probability with granular HARQ is proposed. For LDPC codes, the HARQ retransmission requests are based on received symbols likelihood computations: the legitimate recipient request for the retransmission of the set of bits that are more likely to help for successful LDPC decoding. The performances of the proposed techniques are assessed for nul and negative security gap (SG) values, that is when the eavesdropper's channel benefits from equal or better channel conditions than the legitimate channel.

2018-02-21
Mazin, A., Davaslioglu, K., Gitlin, R. D..  2017.  Secure key management for 5G physical layer security. 2017 IEEE 18th Wireless and Microwave Technology Conference (WAMICON). :1–5.

Next generation 5G wireless networks pose several important security challenges. One fundamental challenge is key management between the two communicating parties. The goal is to establish a common secret key through an unsecured wireless medium. In this paper, we introduce a new physical layer paradigm for secure key exchange between the legitimate communication parties in the presence of a passive eavesdropper. The proposed method ensures secrecy via pre-equalization and guarantees reliable communications by the use of Low Density Parity Check (LDPC) codes. One of the main findings of this paper is to demonstrate through simulations that the diversity order of the eavesdropper will be zero unless the main and eavesdropping channels are almost correlated, while the probability of key mismatch between the legitimate transmitter and receiver will be low. Simulation results demonstrate that the proposed approach achieves very low secret key mismatch between the legitimate users, while ensuring very high error probability at the eavesdropper.